1000 resultados para pulse combustion
Resumo:
This paper reports on the experimental testing of oxygen-enriched porous fuel injection in a scramjet engine. Fuel was injected via inlet mounted, oxide-based ceramic matrix composite (CMC) injectors on both flow path surfaces that covered a total of 9.2 % of the intake surface area. All experiments were performed at an enthalpy of 3.93−4.25±3.2% MJ kg−1, flight Mach number 9.2–9.6 and an equivalence ratio of 0.493±3%. At this condition, the engine was shown to be on the verge of achieving appreciable combustion. Oxygen was then added to the fuel prior to injection such that two distinct enrichment levels were achieved. Combustion was found to increase, by as much as 40 % in terms of combustion-induced pressure rise, over the fuel-only case with increasing oxygen enrichment. Further, the onset of combustion was found to move upstream with increasing levels of oxygen enrichment. Thrust, both uninstalled and specific, and specific impulse were found to be improved with oxygen enrichment. Enhanced fuel–air mixing due to the pre-mixing of oxygen with the fuel together with the porous fuel injection are believed to be the main contributors to the observed enhanced performance of the tested engine.
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Resumo:
An improved understanding of the characteristics of the pre-discharge current pulses in GIS will lead to improved analyses of the results from the UHF partial discharge detection method. This paper presents the characteristics of the first pre-discharge current pulses from a point-to-plain geometry at 1 bar absolute under both polarities of a 1.1/80 us lightning impulse. The analysis has shown that the pre-discharge current wave shape, peak current magnitude and charge is effected by the instantaneous voltage at which the pre- discharge took place as well as the polarity of the active electrode. The measured results show that protrusions on the electrodes have slower wave shape parameters than those reported for free conducting particles.
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
Considering ultrasound propagation through complex composite media as an array of parallel sonic rays, a comparison of computer simulated prediction with experimental data has previously been reported for transmission mode (where one transducer serves as transmitter, the other as receiver) in a series of ten acrylic step-wedge samples, immersed in water, exhibiting varying degrees of transit time inhomogeneity. In this study, the same samples were used but in pulse-echo mode, where the same ultrasound transducer served as both transmitter and receiver, detecting both ‘primary’ (internal sample interface) and ‘secondary’ (external sample interface) echoes. A transit time spectrum (TTS) was derived, describing the proportion of sonic rays with a particular transit time. A computer simulation was performed to predict the transit time and amplitude of various echoes created, and compared with experimental data. Applying an amplitude-tolerance analysis, 91.7±3.7% of the simulated data was within ±1 standard deviation (STD) of the experimentally measured amplitude-time data. Correlation of predicted and experimental transit time spectra provided coefficients of determination (R2) ranging from 100.0% to 96.8% for the various samples tested. The results acquired from this study provide good evidence for the concept of parallel sonic rays. Further, deconvolution of experimental input and output signals has been shown to provide an effective method to identify echoes otherwise lost due to phase cancellation. Potential applications of pulse-echo ultrasound transit time spectroscopy (PE-UTTS) include improvement of ultrasound image fidelity by improving spatial resolution and reducing phase interference artefacts.
Resumo:
The nature of surface and subsurface reactions in polymer combustion is poorly underst0od.l During the burning of thermoplastic polymers a melt layer is observed on the surface, and below the melt layer there is thermal wave penetration. But the exact thickness of the melt layer and the thickness of the thermal wave penetration have not been precisely measured, although a qualitative idea has been given.
Resumo:
Doppler weather radars with fast scanning rates must estimate spectral moments based on a small number of echo samples. This paper concerns the estimation of mean Doppler velocity in a coherent radar using a short complex time series. Specific results are presented based on 16 samples. A wide range of signal-to-noise ratios are considered, and attention is given to ease of implementation. It is shown that FFT estimators fare poorly in low SNR and/or high spectrum-width situations. Several variants of a vector pulse-pair processor are postulated and an algorithm is developed for the resolution of phase angle ambiguity. This processor is found to be better than conventional processors at very low SNR values. A feasible approximation to the maximum entropy estimator is derived as well as a technique utilizing the maximization of the periodogram. It is found that a vector pulse-pair processor operating with four lags for clear air observation and a single lag (pulse-pair mode) for storm observation may be a good way to estimate Doppler velocities over the entire gamut of weather phenomena.
Resumo:
A comparison is made of the performance of a weather Doppler radar with a staggered pulse repetition time and a radar with a random (but known) phase. As a standard for this comparison, the specifications of the forthcoming next generation weather radar (NEXRAD) are used. A statistical analysis of the spectral momentestimates for the staggered scheme is developed, and a theoretical expression for the signal-to-noise ratio due to recohering-filteringrecohering for the random phase radar is obtained. Algorithms for assignment of correct ranges to pertinent spectral moments for both techniques are presented.
Resumo:
Conventionally two-dimensional NMR spectra are recorded in the absolute-intensity mode (1-4). It has recently been demonstrated that absorption-mode 2D spectra have much higher resolution and are the preferred mode of presentation, especially for 2D spectra of biomolecules (5-7). Indeed, any experimental scheme which yields phasemixed lineshapes is subject to modification to yield pure-phase spectra, even at the expense of intensity and anomalous multiplet structure (8-10). For this purpose two types of filters are already known: the z filter (9, 20) and the purging pulse (8, 10). In this note, we propose a 45” pulse pair as a filter for obtaining pure-phase 2D spectra, mainly for experiments in which the above filters do not yield pure-phase spectra.
Resumo:
The theory of transient mode locking for an active modulator in an intracavity frequency-doubled laser is presented. The theory is applied to mode-locked and intracavity frequency-doubled Nd:YAG laser and the mode-locked pulse width is plotted as a function of number of round trips inside the cavity. It is found that the pulse compression is faster and the system takes a very short time to approach the steady state in the presence of a second harmonic generating crystal inside the laser cavity. The effect of modulation depth and the second harmonic conversion efficiency on the temporal behavior of the pulse width is discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
A generalized pulse pair has been suggested in which the longitudinal spin order is retained and the transverse components cancelled by random variation of the interval between pulses, in successive applications of the two-dimensional NMR algorithm. This method leads to pure phases and has been exploited to provide a simpler scheme for two-spin filtering and for pure phase spectroscopy in multiple-quantum-filtered two-dimensional NMR experiments.
Resumo:
Need to analyze particles in a flow? This system takes electrical pulses from acoustical or optical sensors and groups them into bands representing ranges of particle sizes.
Resumo:
The effect of transition metal oxides (Fe2O3, MnO2, Ni2O3 and Co2O3) on polystyrene/ammonium perchlorate propellant systems has been examined. The mechanism of action of the oxides in increasing the burning rate was examined by studying the effect of the oxides on the thermal decomposition and combustion of the oxidizer and the propellant. It has been concluded that one of the mechanisms by which the oxides act is by promoting the charge-transfer process, which is indicated by the enhancement of the electron-transfer process in ammonium perchlorate and by the correlation between the redox potential of the metal ions and the corresponding burning rates of the propellant.
Resumo:
A systematic study was undertaken on the combustion and thermal decomposition of pelletized Ammonium Perchlorate (AP) to investigate the effects of pelletizing pressure and dwell time. At constant pressure, increasing the dwell time results in an increase in the burning rate up to a maximum and thereafter decreases it. The dwell time required for the pellets to have maximum burning rate is a function of pressure. The maximum burning rate is the same for all the pressures used and is also unaffected by increasing, to the range 90-250 μ, the particle size of AP used. In order to explain the occurrence of a maximum in burning rate, pellets were examined for their thermal sensitivities, physical nature and the changes occurring during pelletization with dwell time and pressure. The variations are argued in terms of increasing density, formation of defects such as dislocations leading to an increase in the number of reactive sites, followed by their partial annihilation at longer dwell times due to flow of material during pelletization.
Resumo:
The hardware and the software details of a user-friendly, simple, flexible and inexpensive pulse programmer using programmable counters interfaced to a microprocessor are described. The control of the various parameters that are required for NMR applications is implemented using the microprocessor. The basic hardware is extendable to other applications which require programmable pulse trains.