990 resultados para propagation dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The learning properties of a universal approximator, a normalized committee machine with adjustable biases, are studied for on-line back-propagation learning. Within a statistical mechanics framework, numerical studies show that this model has features which do not exist in previously studied two-layer network models without adjustable biases, e.g., attractive suboptimal symmetric phases even for realizable cases and noiseless data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the dynamics and stability of solitonic pulses (including soliton interaction) across URFL transmission links, as well as the dependence of these dynamics on cavity design (length, symmetry, reflectivity) and input pulse characteristics. The first experimental demonstration of long-distance ldquotruerdquo soliton propagation through optical fibre. The results conclude that even relatively long links of the order of 50 km show excellent nonlinear resilience and are capable of providing virtually transparent transmission under a broad range of input pulse characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity. © 2014 World Scientific Publishing Company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical mechanics of two coupled vector fields is studied in the tight-binding model that describes propagation of polarized light in discrete waveguides in the presence of the four-wave mixing. The energy and power conservation laws enable the formulation of the equilibrium properties of the polarization state in terms of the Gibbs measure with positive temperature. The transition line T=∞ is established beyond which the discrete vector solitons are created. Also in the limit of the large nonlinearity an analytical expression for the distribution of Stokes parameters is obtained, which is found to be dependent only on the statistical properties of the initial polarization state and not on the strength of nonlinearity. The evolution of the system to the final equilibrium state is shown to pass through the intermediate stage when the energy exchange between the waveguides is still negligible. The distribution of the Stokes parameters in this regime has a complex multimodal structure strongly dependent on the nonlinear coupling coefficients and the initial conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high-resolution numerical simulations, we examine the validity of simple estimates for the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately 75% of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the dynamical properties of the RZ-DPSK encoded sequences, focusing on the instabilities in the soliton train leading to the distortions of the information transmitted. The problem is reformulated within the framework of complex Toda chain model which allows one to carry out the simplified description of the optical soliton dynamics. We elucidate how the bit composition of the pattern affects the initial (linear) stage of the train dynamics and explain the general mechanisms of the appearance of unstable collective soliton modes. Then we discuss the nonlinear regime using asymptotic properties of the pulse stream at large propagation distances and analyze the dynamical behavior of the train classifying different scenarios for the pattern instabilities. Both approaches are based on the machinery of Hermitian and non-Hermitian lattice analysis. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simulation of ultrafast photoinduced processes is a fundamental step towards the understanding of the underlying molecular mechanism and interpretation/prediction of experimental data. Performing a computer simulation of a complex photoinduced process is only possible introducing some approximations but, in order to obtain reliable results, the need to reduce the complexity must balance with the accuracy of the model, which should include all the relevant degrees of freedom and a quantitatively correct description of the electronic states involved in the process. This work presents new computational protocols and strategies for the parameterisation of accurate models for photochemical/photophysical processes based on state-of-the-art multiconfigurational wavefunction-based methods. The required ingredients for a dynamics simulation include potential energy surfaces (PESs) as well as electronic state couplings, which must be mapped across the wide range of geometries visited during the wavepacket/trajectory propagation. The developed procedures allow to obtain solid and extended databases reducing as much as possible the computational cost, thanks to, e.g., specific tuning of the level of theory for different PES regions and/or direct calculation of only the needed components of vectorial quantities (like gradients or nonadiabatic couplings). The presented approaches were applied to three case studies (azobenzene, pyrene, visual rhodopsin), all requiring an accurate parameterisation but for different reasons. The resulting models and simulations allowed to elucidate the mechanism and time scale of the internal conversion, reproducing or even predicting new transient experiments. The general applicability of the developed protocols to systems with different peculiarities and the possibility to parameterise different types of dynamics on an equal footing (classical vs purely quantum) prove that the developed procedures are flexible enough to be tailored for each specific system, and pave the way for exact quantum dynamics with multiple degrees of freedom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allostery is a phenomenon of fundamental importance in biology, allowing regulation of function and dynamic adaptability of enzymes and proteins. Despite the allosteric effect was first observed more than a century ago allostery remains a biophysical enigma, defined as the “second secret of life”. The challenge is mainly associated to the rather complex nature of the allosteric mechanisms, which manifests itself as the alteration of the biological function of a protein/enzyme (e.g. ligand/substrate binding at the active site) by binding of “other object” (“allos stereos” in Greek) at a site distant (> 1 nanometer) from the active site, namely the effector site. Thus, at the heart of allostery there is signal propagation from the effector to the active site through a dense protein matrix, with a fundamental challenge being represented by the elucidation of the physico-chemical interactions between amino acid residues allowing communicatio n between the two binding sites, i.e. the “allosteric pathways”. Here, we propose a multidisciplinary approach based on a combination of computational chemistry, involving molecular dynamics simulations of protein motions, (bio)physical analysis of allosteric systems, including multiple sequence alignments of known allosteric systems, and mathematical tools based on graph theory and machine learning that can greatly help understanding the complexity of dynamical interactions involved in the different allosteric systems. The project aims at developing robust and fast tools to identify unknown allosteric pathways. The characterization and predictions of such allosteric spots could elucidate and fully exploit the power of allosteric modulation in enzymes and DNA-protein complexes, with great potential applications in enzyme engineering and drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.