982 resultados para prestressed concrete.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Significant wheel-rail dynamic forces occur because of imperfections in the wheels and/or rail. One of the key responses to the transmission of these forces down through the track is impact force on the sleepers. Dynamic analysis of nonlinear systems is very complicated and does not lend itself easily to a classical solution of multiple equations. Trying to deduce the behaviour of track components from experimental data is very difficult because such data is hard to obtain and applies to only the particular conditions of the track being tested. The finite element method can be the best solution to this dilemma. This paper describes a finite element model using the software package ANSYS for various sized flat defects in the tread of a wheel rolling at a typical speed on heavy haul track. The paper explores the dynamic response of a prestressed concrete sleeper to these defects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural health monitoring of existing infrastructure is currently an active field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical structures. Change of static deflection as the indicator of damage is the simplest tool in a structural health monitoring scenario of bridges that is least exploited in damage identification strategies. In this paper, some simple and elegant equations based on loss of symmetry due to damage are derived and presented for identification of damage in a bridge girder modeled as a simply supported beam using changes in static deflections and dynamic parameters. A single contiguous and distributed damage, typical of reinforced or prestressed concrete structures, is assumed for the structure. The methodology is extended for a base-line-free as well as base-line-inclusive measurement. Measurement strategy involves application of loads only at two symmetric points one at a time and deflection measurements at those symmetric points as well as at the midspan of the beam. A laboratory-based experiment is used to validate the approach. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

利用光纤光栅传感技术,在现场对大管桩在外载作用下的变形情况进行了测试.根据实验测试结果,利用数值法反分析大管桩力学性能参数,同时得到大管桩接缝处的环氧树脂材料对大管桩整体力学性能影响很小.反演出的合理的力学性能参数为大管桩的正确受力分析以及健康诊断提供了依据.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diversos pesquisadores têm estudado o comportamento e o emprego de aduelas de concreto, que constituem as vigas segmentadas em sistemas estruturais, de maneira especial pontes e viadutos. Por esta razão, inúmeros trabalhos têm sido publicados nos últimos anos respaldados por testes experimentais e análises numéricas. O comportamento destas vigas contrasta com as clássicas vigas monolíticas em diversos aspectos, pois, a estrutura é composta de partes de elementos de concreto pré-moldado que, após serem posicionados no local definitivo, são protendidos. A protensão pode ser aderente ou não aderente. A principal vantagem deste sistema de construção é a rapidez e o alto controle de qualidade, por isso é largamente utilizado, havendo uma demanda de estudo de previsão do seu real comportamento No presente trabalho apresenta-se uma modelagem numérica via elementos finitos, para simular o comportamento de vigas compostas por aduelas justapostas sem material ligante entre as juntas. A protensão aplicada é aderente e a análise considera a não linearidade da região da junta. Assim sendo, o objetivo desta investigação é dar uma contribuição ao estudo do comportamento estrutural estático de vigas segmentadas, atentando para o comportamento das juntas, utilizando um programa comercial. Para o modelo são empregadas técnicas usuais de discretização, via método dos elementos finitos (MEF), por meio do programa de elementos finitos SAP2000[93]. O modelo proposto é constituído de elementos de placa próprios para concreto para representar a viga, a protensão é introduzida por meio de barras bidimensionais que transferem as tensões ao longo de seu comprimento e as juntas são implementadas utilizando elementos de contato. A analise é bidimensional e considera os efeitos das perdas de protensão. Este trabalho de pesquisa objetiva também o estudo de elementos de contato especialmente as características de deformação para esta ferramenta computacional. A definição dos parâmetros para o modelo foi feita com base em dados experimentais disponíveis na literatura. O modelo numérico foi calibrado e confrontado com resultados experimentais obtidos em ensaios de laboratório.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In fibre reinforced polymer (FRP) prestressed concrete applications, an FRP tendon must sustain high axial tensile stresses and, if cracks occur, additional dowel forces. The tendon may also be exposed to solutions and so the combined axial-shear stress performance after long-term environmental exposure is important. Experiments were conducted to investigate the combined axial-shear stress failure envelope for unidirectional carbon FRP tendons which had been exposed to either water, salt water or concrete pore solution at 60 °C for approximately 18 months. The underlying load resisting mechanisms were found to depend on the loading configuration, restraint effects and the initial stress state. When saturated, CFRP tendons are likely to exhibit a reduced shear stiffness. However, the ultimate limit state appeared to be fibre-dominated and was therefore less susceptible to reductions due to solution uptake effects. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the case history of a damaged one-span prestressed concrete bridge on a crucial artery near the city of Cagliari (Sardinia), along the sea-side. After being involved in a disastrous flood, attention has arisen on the worrying safety state of the deck, submitted to an intense daily traffic load. Evident signs of this severe condition were the deterioration of the beams concrete and the corrosion, the lack of tension and even the rupture of the prestressing cables. After performing a limited in situ test campaign, consisting of sclerometer, pull out and carbonation depth tests, a first evaluation of the safety of the structure was performed. After collecting the data of dynamic and static load tests as well, a comprehensive analysis have been carried out, also by means of a properly calibrated F.E. model. Finally the retrofitting design is presented, consisting of the reparation and thickening of the concrete cover, providing flexural and shear FRP external reinforcements and an external prestressing system, capable of restoring a satisfactory bearing capacity, according to the current national codes. The intervention has been calibrated by the former F.E. model with respect to transversal effects and influence of local and overall deformation of reinforced elements. © 2012 Taylor & Francis Group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anchorages are unparalleled structures only in a suspension bridge, and as main bearing facilities, play an important role in connecting the superstructures and the ground. The tunnel anchorage, as one alternative type of the anchorages, has more advantages over its counterpart, the gravity anchorage. With the tunnel anchorages adopted, not only can surface excavation be reduced to protect the environment, and natural condition of the rock be utilized and potential bearing capacity of surrounding rock be mobilized to save engineering cost, but also the technological predominance of auxiliary engineering measures, such as prestressed concrete, anchoring piles, rock anchors and collar beam between the two separated anchorages, can be easily cooperated to work together harmoniously under the circumstances of poor rock quality. There are plentiful high mountains and deep canyons in west part of China, and long-span bridge construction is inevitably encountered in order to realize leapfrogging development of the transportation infrastructure. Western mountainous areas usually possess the conditions for constructing tunnel anchorages, and therefore, the tunnel anchorages, which are conformed to the conception of resource conservative and sustainable society, extremely have application and popularization value in western underdeveloped region. The scientific and technological problem about the design, construction and operation of tunnel anchorages should be further investigated. Combining the engineering of western tunnel anchorages for the Balinghe Suspension Bridge, this paper probed into the survey method and in-situ test method for tunnel anchorages, scientific rock quality evaluation of surrounding rock to provide reasonable physical and mechanical parameters for design, construction and operation of tunnel anchorages, bearing capacity estimation for tunnel anchorage, deformation prediction of the anchorage-rockmass system, tunnel-anchorage slope stability analysis and the evaluation of excavation stability and degree of safety of the anchorage tunnel. The following outcomes were obtained: 1. Materials of tunnel anchorages of suspension bridge built (and in progress) at home and abroad were systematically sorted out, with the engineering geological condition and geomechanical property of surrounding rock around the anchorage tunnel, the design size of anchorages and the construction method of anchorage tunnel paid more emphasis on, to unveil the internal relationship between the engineering geological conditions of surrounding rock and the design size and axis angle of anchorages and provide references for future design, construction and study of tunnel anchorages. 2. Physical and mechanical parameters were recommended based on three domestic and foreign methods of rock quality evaluation. 3. In-situ tests, adopting the back-thrust method, of two kinds of reduced scale model, 1/30 and 1/20, for the tunnel anchorages were conducted in the declining exploration drift with rock mass at the test depth being the same as surrounding rock around real anchorages, and reliable field rockmass displacement data were acquired. Attenuation relation between the increment of distance from the anchorage and the decrement of rockmass displacement under maximum test load, and influential scope suffered by anchorage load were obtained. 4. Using similarity theory, the magnitude of real anchorage and rockmass displacement under design load and degree of safety of the anchorage system were deduced. Furthermore, inversion analysis to deformation modulus of slightly weathered dolomite rock, the surrounding rock of anchorage tunnel, was performed by the means of numerical simulation. 5. The influential law of the geometrical size to the limit bearing capacity of tunnel anchorage was studied. 6. Based on engineering geological survey data, accounting for the combination of strata layer and adverse discontinuities, the failure patterns of tunnel anchorage slope were divided into three modes: sliding of splay saddle pier slope, superficial-layer slippage, and deep-layer slippage. Using virtual work principle and taking anchorage load in account, the stability of the three kinds of failure patterns were analyzed in detail. 7. The step-by-step excavation of anchorage tunnel, the numerical overload and the staged decrement of rock strength parameters were numerically simulated to evaluate the excavation stability of surrounding rock around anchorage tunnel, the overload performance of tunnel anchorage, and the safety margin of strength parameters of the surrounding rock.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the design, commissioning, and evaluation of a ?ber-optic strain sensor system for the structural health monitoring of a prestressed concrete posttensioned box girder railway bridge in Mumbai, India, which shows a number of well-documented structural problems. Preliminary laboratory trials to design the most appropriate sensor system that could be readily transported and used on site are described, followed by a description of load tests on the actual bridge undertaken in collaboration with Indian Railways and using locomotives of known weight. Results from the load tests using the optical system are compared with similar results obtained using electrical resistance strain gages. Conclusions are summarized concerning the integrity of the structure and for the future use of the sensor system for monitoring bridges of this type. Crack width measurements obtained during the load tests are also described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An analytical model to predict strand slips within both transmission and anchorage lengths in pretensioned prestressed concrete members is presented. This model has been derived from an experimental research work by analysing the bond behavior and determining the transmission and anchorage lengths of seven-wire prestressing steel strands in different concrete mixes. A testing technique based on measuring the prestressing strand force in specimens with different embedment lengths has been used. The testing technique allows measurement of free end slip as well as indirect determination of the strand slip at different cross sections of a member without interfering with bond phenomena. The experimental results and the proposed model for strand slip distribution have been compared with theoretical predictions according to different equations in the literature and with experimental results obtained by other researchers. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental study on strengthening prestressed concrete (PC) hollow-core slabs was conducted. Nine PC hollow-core slabs were tested, including three unstrengthened reference slabs and six slabs strengthened with bamboo plates. The results show that compared with unreinforced slabs, the cracking loads of PC hollow-core slabs strengthened with bamboo plates increase by 5% to 96% (with an average of 41%), the loads at allowable deflection increase by 8% to 76% (with an average of 35%), and the ultimate loads increase by 83% to 184% (with an average of 123%), respectively. All the degrees of improvement in the crack load, allowable load and ultimate load increase with the increase in the thickness and width of the bamboo plates. With the increase in the loads, the strain distribution along the height of the strengthened slabs at the mid-span basically remains a plan-assumption. With the increase in the thickness and width of the bamboo plates, both the bamboo tensile strain on the tensile face and the concrete compressive strain on the compression face of the strengthened slabs decrease under the same load level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho de Projecto para obtenção do grau de Mestre em Engenharia na Área de Especialização em Estruturas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil.