988 resultados para phase-stabilized
Resumo:
Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.
Resumo:
A new ionic conductor La2-xNdxMo2O9 (x=0.0-2.0) has been synthesized by wet-chemistry method. The precursors and the resultant oxide powders were characterized by DTA/TG, DSC, XRD and XPS techniques. Effect of substituting Nd for La reveals that the phase transition which occurs in La2Mo2O9 around 565degreesC disappears when x>0.2. And the maximum amount of Nd stabilized the high temperature phase of beta-La2Mo2O9 from cubic to tetragonal is about x=1.6. The measurements of impedance spectroscopy indicate that the ionic conductivity becomes considerably higher in comparison to that of La2Mo2O9.
Resumo:
The electron energy-loss near-edge structure (ELNES) at the O K edge has been studied in yttria-stabilized zirconia (YSZ). The electronic structure of YSZ for compositions between 3 and 15 mol % Y2O3 has been computed using a pseudopotential-based technique to calculate the local relaxations near the O vacancies. The results showed phase transition from the tetragonal to cubic YSZ at 10 mol % of Y2O3, reproducing experimental observations. Using the relaxed defect geometry, calculation of the ELNES was carried out using the full-potential linear muffin-tin orbital method. The results show very good agreement with the experimental O K-edge signal, demonstrating the power of using ELNES to probe the stabilization mechanism in doped metal oxides.
Resumo:
PbZrO3/SrRuO3/SrTiO3 (100) epitaxial heterostructures with different thickness of the PbZrO3 (PZO) layer (d(PZO) similar to 5-160 nm) were fabricated by pulsed laser deposition. The ultrathin PZO films (d(PZO) <= 10 nm) were found to possess a rhombohedral structure. On increasing the PZO film thickness, a bulk like orthorhombic phase started forming in the film with d(PZO) similar to 22 nm and became abundant in the thicker films. Nanobeam electron diffraction and room-temperature micro-Raman measurements revealed that the stabilization of the rhombohedral phase of PZO could be attributed to the epitaxial strain accommodated by the heterostructures. Room-temperature polarization vs electric field measurements performed on different samples showed characteristic double hysteresis loops of antiferroelectric materials accompanied by a small remnant polarization for the thick PZO films (dPZO >= 50 nm). The remnant polarization increased by reducing the PZO layer thickness, and a ferroelectric like hysteresis loop was observed for the sample with d(PZO) similar to 22 nm. Local ferroelectric properties measured by piezoresponse force microscopy also exhibited a similar thickness-dependent antiferroelectric-ferroelectric transition. Room-temperature electrical properties observed in the PZO thin films in correlation to their structural characteristics suggested that a ferroelectric rhombohedral phase could be stabilized in thin epitaxial PZO films experiencing large interfacial compressive stress.
Resumo:
Thermal barrier coatings (TBCs) are widely adopted to protect mechanical components in gas turbine engines operating at high temperature. Basically, the surface temperature of these components must be low enough to retain material properties within acceptable bounds and to extend component life. From this standpoint, air plasma-sprayed (APS) ceria and yttria co-stabilized zirconia (CYSZ) is particularly promising because it provides enhanced thermal insulation capabilities and resistance to hot corrosion. However, essential mechanical properties, such as hardness and Young's modulus, have been less thoroughly investigated. Knowledge of Young's modulus is of concern because it has a significant effect on strain tolerance and stress level and, hence, on durability. The focus of the present study was to determine the mechanical properties of APS CYSZ coatings. In particular, X-ray diffraction (XRD) is adopted for phase analysis of powders and as-sprayed coatings. In addition, scanning electron microscopy (SEM) and image analysis (IA) are employed to explore coating microstructure and porosity. Finally, the Young's modulus of the coating is determined using nanoindentation and a resonant method. The results obtained are then discussed and a cross-check on their consistency is carried out by resorting to a micromechanical model. © 2010 Blackwell Publishing Ltd.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with NO. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 299-592 K. The second-order rate constants at 10 Torr fitted the Arrhenius equation log(k/cm(3) molecule(-1) s(-1)) = (- 11.66 +/- 0.01) + (6.20 +/- 0.10 kJ mol(-1))IRT In 10 The rate constants showed a variation with pressure of a factor of ca. 2 over the available range, almost independent of temperature. The data could not be fitted by RRKM calculations to a simple third body assisted association reaction alone. However, a mechanistic model with an additional (pressure independent) side channel gave a reasonable fit to the data. Ab initio calculations at the G3 level supported a mechanism in which the initial adduct, bent H2SiNO, can ring close to form cyclo-H2SiNO, which is partially collisionally stabilized. In addition, bent H2SiNO can undergo a low barrier isomerization reaction leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are NH2 + SiO. The rate controlling barrier for this latter pathway is only 16 kJ mol(-1) below the energy of SiH2 + NO. This is consistent with the kinetic findings. A particular outcome of this work is that, despite the pressure dependence and the effects of the secondary barrier (in the side reaction), the initial encounter of SiH2 with NO occurs at the collision rate. Thus, silylene can be as reactive with odd electron molecules as with many even electron species. Some comparisons are drawn with the reactions of CH2 + NO and SiCl2 + NO.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 297 K and at 345 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied independently as a function of H2O (or D2O) and SF6 (bath gas) pressures. At a fixed pressure of SF6 (5 Torr), [SiH2] decay constants, k(obs), showed a quadratic dependence on [H2O] or [D2O]. At a fixed pressure of H2O or D2O, k(obs) Values were strongly dependent on [SF6]. The combined rate expression is consistent with a mechanism involving the reversible formation of a vibrationally excited zwitterionic donor-acceptor complex, H2Si...OH2 (or H2Si...OD2). This complex can then either be stabilized by SF6 or it reacts with a further molecule of H2O (or D2O) in the rate-determining step. Isotope effects are in the range 1.0-1.5 and are broadly consistent with this mechanism. The mechanism is further supported by RRKM theory, which shows the association reaction to be close to its third-order region of pressure (SF6) dependence. Ab initio quantum calculations, carried out at the G3 level, support the existence of a hydrated zwitterion H2Si...(OH2)(2), which can rearrange to hydrated silanol, with an energy barrier below the reaction energy threshold. This is the first example of a gas-phase-catalyzed silylene reaction.
Resumo:
Laser flash photolysis studies of silylene, SiH2, generated by the 193 nm laser flash photolysis phenylsilane, PhSiH3, have been carried out to obtain rate constants for its bimolecular reaction with PhSiH3 itself, in the gas phase. The reaction was studied in SF6 (mostly at 10 Torr total pressure) over the temperature range 298-595 K. The rate constants (also found to be pressure independent) gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-9.92 +/- 0.04) + (3.31 +/- 0.27) kJ mol(-1)/RT ln 10 Similar investigations of the reaction of silylene with benzene, C6H6, (295-410 K) gave data suggestive of the fact that SiH2 might be reacting with photochemical products of C6H6 as well as with C6H6 itself. However, in the latter system, apparent rate constants were sufficiently low to indicate that in the reaction of SiH2 with PhSiH3 addition to the aromatic ring was unlikely to be in excess of 3% of the total. Quantum chemical calculations of the energy surface for SiH2 + C6H6 indicate that 7-silanorcaradiene and 7-silacycloheptatriene are possible products but that PhSiH3 formation is unlikely. RRKM calculations suggest that 7-silanorcaradiene should be the initial product but that it cannot be collisionally stabilized under experimental conditions
Resumo:
Nickel hydroxide can provide an outstanding cathode material in alkaline secondary batteries, however the progressive decrease of the charge capacity as a function of the number of oxidation/reduction cycles is a challenging problem to be solved. New improvements on the electrochemical properties of electrode materials can be achieved by exploiting the much better performance of alpha-nickel hydroxide. Such materials were obtained in a stable form by sol-gel method and characterized by thermogravimetric analyses, UV-Vis spectroscopy, X-ray diffractometry, scanning and transmission electron microscopy, cyclic voltammetry and electrochemical quartz crystal microbalance techniques. The results revealed not only the formation of the alpha-Ni(OH)(2) phase, but also a much better electrochemical reversibility and stability as compared with similar materials obtained by electrochemical precipitation method.
Resumo:
Catalysts with various nickel loads were prepared on supports of ZrO2, ZrO2-Y2O3 and ZrO2-CaO, characterized by XRD and TPR and tested for activity in ethanol steam reforming. XRD of the supports identified the monoclinic crystalline phase in the ZrO2 and cubic phases in the ZrO2-Y2O3 and ZrO2-CaO supports. In the catalysts, the nickel impregnated on the supports was identified as the NiO phase. In the TPR analysis, peaks were observed showing the NiO phase having different interactions with the supports. In the catalytic tests, practically all the catalysts achieved 100% ethanol conversion, H-2 yield was near 70% and the gaseous concentrations of the other co-products varied in accordance with the equilibrium among them, affected principally by the supports. It was observed that when the ZrO2 was modified with Y2O3 and CaO, there were big changes in the CO and CO2 concentrations, which were attributed to the rise in the number of oxygen vacancies, permitting high-oxygen mobility and affecting the gaseous equilibrium. The liquid products analysis showed a low selectivity to liquid co-products during the reforming reactions. (c) 2007 Published by Elsevier B.V.
Resumo:
Microemulsions (ME) containing soya phosphatidylcholine (SPC/polyoxyethylenglycerol trihydroxystearate 40 (EU)/sodium oleate (SO) as surfactant cholesterol (CHO) as oil phase and aqueous buffer were studied. Pseudo-ternary phase diagrams of the investigated systems were obtained at constant SPC/EU/SO weight ratio 3.5:3.5:3.0 by titration, in order to characterize the proportions between the components to form clear systems. The dynamic light scattering results showed that the size of the oil droplets decreases significantly with the ratio of surfactant/oil phase added to system. Depending on the composition ME system could exhibit a thixotropic behavior. The apparent viscosity increased 25- and 13-folds with cholesterol concentration for drug-free and drug-load ME, respectively. It was also verified that the octanol/aqueous buffer partition coefficient (K-O/B) of doxorubicin (DOX) was pH dependent increasing abruptly above pH 6.0. It was possible to incorporate 2.24 mg/ml of DOX into ME. The incorporation of DOX in the ME systems increased the droplets size for all surfactant concentrations used in the system. The results suggest that DOX interacts with the microstructure of the ME at the studied pH increasing significantly the drug solubility. It was possible to conclude that the investigated ME can be a very promising vehicle as drug-carrier for administration of doxorubicin. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Depending on the composition, the mixture of surfactant, oil and water, may form supramolecular aggregates with different structures which can significantly influence the drug release. In this work several microemulsion (ME) systems containing soya phosphatidylcholine (SPC) and eumulgin HRE40 (TM) (EU) as surfactant, cholesterol (O) as oil phase, and ultra-pure water as an aqueous phase were studied. MEs with and without the antitumoral drug doxorubicin (DOX) were prepared. The microstructures of the systems were characterized by photon correlation spectroscopy, rheological behavior, polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). The results reveal that the diameter of the oil droplets was dependent on the surfactant (S) amount added to formulations. The apparent viscosity was dependent on the O/S ratio. High O/S ratio leads to the crystallization of cholesterol polymorphs phases which restricts the mobility of the DOX molecules into the ME structure. Droplets with short-range spatial correlation were formed from the ME with the low O/S ratio. The increase of the cholesterol fraction in the O/S mixture leads to the formation of ordered structures with lamellar arrangements. These different structural organizations directly influenced the drug release profiles. The in vitro release assay showed that the increase of the O/S ratio in the formulations inhibited the constant rate of DOX release. Since the DOX release ratio was directly dependent on the ratio of O/S following an exponential decay profile, this feature can be used to control the DOX release from the ME formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Doped zirconia has been used in electronic applications in the cubic crystalline phase. Ceria-stabilized tetragonal zirconia presents high toughness and can also be applied as solid electrolytes. The tetragonal phase of zirconia can be stabilized at room temperature with ceria in a broad range of composition. However, CeO2-ZrO2 has low sinterability. so it is important to investigate the effect of sintering dopants. In this study the effect of iron, copper. manganese and nickel was investigated. The dopants such as iron and copper lowered the sintering temperature from 1600 degreesC down to 1450 degreesC, with a percentage of tetragonal phase retained at room temperature higher than 98% and also with an increase of the electrical conductivity. The electrical conductivity was measured using impedance spectroscopy. The grain boundary contribution was determined and the activation energy associated with the ionic conduction was 1.04 eV. The dopants can also promote a grain boundary cleanliness verified by blocking effect measurement. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The anelastic spectrum (dynamic Young's modulus and elastic energy absorption) of La2CuO4+δ has been measured between 1 and 700 K with 0<δ<0.02. The spectrum of stoichiometric La2CuO4 in the low-temperature orthorhombic (LTO) phase is dominated by two intense relaxation processes which cause softenings of 16% around 150 K and 9% below 30 K at f∼1 kHz. The relaxation at 150 K is attributed to the presence of a fraction of the CuO6 octahedra which are able to change their tilted configuration by thermal activation between orientations which are nearly energetically equivalent, possibly within the twin boundaries. The relaxation below 30 K is governed by tunneling, and involves a considerable fraction of the lattice atoms. It is proposed that the double-well potentials for the low-temperature relaxation are created by the tendency of the LTO phase to form low-temperature tetragonal (LTT) domains, which however are not stabilized like when La is partially substituted with Ba. On doping with excess O, the relaxation rates of these processes are initially enhanced by hole doping, while their intensities are depressed by lattice disorder; an explanation of this behavior is provided. Excess O also causes two additional relaxation processes. The one appearing at lower values of δ is attributed to the hopping of single interstitial O2- ions, with a hopping rate equal to τ-1=2×10-14exp(-5600/T) s. The second process is slower and can be due to O pairs or other complexes containing excess O.
Resumo:
Aqueous dispersions of monoolein (MO) with a commercial hydrophobically modified ethyl hydroxyethyl cellulose ether (HMEHEC) have been investigated with respect to the morphologies of the liquid crystalline nanoparticles. Only very low proportions of HMEHEC are accepted in the cubic and lamellar phases of the monoolein-water system. Due to the broad variation of composition and size of the commercial polymer, no other single-phase regions were found in the quasi-ternary system. Interactions of MO with different fractions of the HMEHEC sample induced the formation of lamellar and reversed hexagonal phases, identified from SAXD, polarization microscopy, and cryogenic TEM examinations. In excess water (more than 90 wt %) coarse dispersions are formed more or less spontaneously, containing particles of cubic phase from a size visible by the naked eye to small particles observed by cryoTEM. At high polymer/MO ratios, vesicles were frequently observed, often oligo-lamellar with inter-lamellar connections. After homogenization of the coarse dispersions in a microfluidizer, the large particles disappeared, apparently replaced by smaller cubic particles, often with vesicular attachments on the surfaces, and by vesicles or vesicular particles with a disordered interior. At the largest polymer contents no proper cubic particles were found directly after homogenization but mainly single-walled defected vesicles with a peculiar edgy appearance. During storage for 2 weeks, the dispersed particles changed toward more well-shaped cubic particles, even in dispersions with the highest polymer contents. In some of the samples with low polymer/MO ratio, dispersed particles of the reversed hexagonal type were found. A few of the homogenized samples were freeze-dried and rehydrated. Particles of essentially the same types, but with a less well-developed cubic character, were found after this treatment. © 2007 American Chemical Society.