814 resultados para passion
Resumo:
ABSTRACT: Hydrogenation of passion fruit (passiflora edulis) seed oil was carried out with a commercial nickel/silica catalyst under different experimental conditions. The influence of reaction parameters (reaction temperature, hydrogen pressure, amount of catalyst, agitation rate and reaction time) on the response variable (iodine value) was studied using a central composite rotatable design and six center points for replication. Under the experimental conditions used, the model response equations for the iodine value showed good agreement with the experimental results.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The increase in market demand for fresh fruits along with the high price of passion fruit juice in domestic and international markets has increased the interest in fruit, especially the purple passion fruit in the center south of the country seeking to export. This study aimed to evaluate the effects of plant growth regulator on the emergence and development of seedlings of passion 'Roxinho of Kenya' when propagated sexually. The treatments consisted of concentrations of commercial product Stimulate (R): control (no biostimulant); 6; 12; 18; 24 and 30 mL. kg(-1) of seed. It were evaluated the percentage of seedling emergence, number of leaves, aerial part dry weight, stem and root (g), root length (mm), diameter and stem length (mm), leaf area and chlorophyll 'a' and 'b'. The application of bio-stimulant in doses of 6 and 12 mL. kg(-1) promotes increased percentage of seedling emergence of Passiflora edulis Sims in a shorter time. The use of it also promotes the development of seedlings, with better results for the dose of 12 and 24 mL. kg(-1) treated seeds.
Resumo:
The objective of this work was to evaluate the effects of UV-B radiation on the vegetative growth and on the gas exchange characteristics of passion fruit plants (Passiflora edulis) grown in greenhouse. The average unweighted UV-B radiation near the apex of the plants was 8 W m-2 for the UV-B treatment (high UV-B), and 0.8 W m-2 for the control plants (low UV-B). Plants were irradiated with UV-B for 7 hours per day, centered on solar noon, during 16 days. High UV-B radiation resulted in lower shoot dry matter accumulation per plant. The content of UV-B absorbing compounds and anthocyanins was increased in the plants exposed to high UV-B radiation, when compared with the control. UV-B radiation did not affect stomatal conductance or transpiration rate, but reduced photosynthesis and instantaneous water‑use efficiency, and increased intercellular CO2 concentration. The accumulation of UV-B-absorbing compounds and anthocyanins did not effectively shield plants from supplementary UV-B radiation, since the growth and photosynthetic processes were significantly reduced.
Resumo:
The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production. Rev. Biol. Trop. 60 (4): 1553-1565. Epub 2012 December 01.
Resumo:
This study aimed to characterize the anatomical events and ultrastructural aspects of direct and indirect in vitro organogenesis in Passiflora edulis. Root explants were cultured on induction medium, supplemented with 4.44 mu M 6-benzyladenine. Roots at different stages of development were collected and processed for observation by light microscopy and scanning and transmission electron microscopy. Patterns of direct and indirect regeneration were observed in the explants. During direct organogenesis, the organogenic buds and nodules, formed from meristemoids, originated from the pericycle regions distant from the cut surface. Completely differentiated buds were observed after 20 days of culture. During indirect organogenesis, bud formation occurred via meristemoids at the periphery of the calli, which differentiated from the cortical region of the initial explant. Regardless of the regeneration pattern, the meristemoids had similar ultrastructural characteristics; however, differences were reported in the nuclear shape of the cells of the meristemoids formed directly and indirectly. This study provides important information for enhancing the understanding and characterization of the organogenic process in non-meristematic explants and provides information on the use of roots as explants in genetic transformation protocols for this important tropical species.
Resumo:
The content of isoorientin in passion fruit rinds (Passiflora Mulls fo. flavicarpa O. Degener) was determined by HPTLC (high performance thin layer chromatography) with densitometric analysis. The results revealed a higher amount of isoorientin in healthy rinds of P edulis (92.275 +/- 0.610 mg L-1) than in rinds with typical symptoms of PWV (Passion fruit Woodiness Virus) infection (28.931 +/- 0.346 mg L-1). The HPTLC data, allied to assays of radical scavenging activity, suggest the potential of P Mulls rinds as a natural source of flavonoids or as a possible functional food.
Resumo:
The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The characterization of cellular changes that occur during somatic embryogenesis is essential for understanding the factors involved in the transition of somatic cells into embryogenically competent cells and determination of cells and/or tissues involved. The present study describes the anatomical and ultrastructural events that lead to the formation of somatic embryos in the model system of the wild passion fruit (Passiflora cincinnata). Mature zygotic embryos were inoculated in Murashige and Skoog induction media supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Zygotic embryo explants at different development stages were collected and processed by conventional methods for studies using light, scanning, and transmission electron microscopy (TEM). Histochemical tests were used to examine the mobilization of reserves. The differentiation of the somatic embryos began in the abaxial side of the cotyledon region. Protuberances were formed from the meristematic proliferation of the epidermal and mesophyll cells. These cells had large nuclei, dense cytoplasm with a predominance of mitochondria, and a few reserve compounds. The protuberances extended throughout the abaxial surface of the cotyledons. The ongoing differentiation of peripheral cells of these structures led to the formation of proembryogenic zones, which, in turn, dedifferentiated into somatic embryos of multicellular origin. In the initial stages of embryogenesis, the epidermal and mesophyll cells showed starch grains and less lipids and protein reserves than the starting explant. These results provide detailed information on anatomical and ultrastructural changes involved in the acquisition of embryogenic competence and embryo differentiation that has been lacking so far in Passiflora.
Resumo:
The aim of this study was to identify future distribution areas and propose actions to preserve passion fruit pollination service under a scenario of future climate change. We used four species of Xylocopa bees that are important for passion fruit pollination in Brazilian Tropical Savannas. We also used the known forage plant species (33 species) that are associated with this same area, since passion fruit flowers provide only nectar for bees and only during their blossoming period. We used species distribution modeling to predict the potential areas of occurrence for each bee and plant based on the current day distribution and a future climate scenario (moderate projections of climate change to 2050). We used a geographic information system to classify the models and to analyze the future areas for both groups of species. The current day distribution map showed that Xylocopa and plant species occurred primarily in the southern and central-eastern areas of the Brazilian Tropical Savannas. In the north, Xylocopa species only occurred in a small area between the states of Maranhão and Piauí while forage plant species were only observed in the northern part of the Tocantins State. However, both future scenarios (bees and plants) showed a shift in distribution, with occurrence predominantly detected in the northern areas of Brazilian Tropical Savannas. Possible conservation areas and the use of appropriate agricultural practices were suggested to ensure the maintenance of the bee/plant focal species.
Resumo:
The content of isoorientin in passion fruit rinds (Passiflora edulis fo. flavicarpa O. Degener) was determined by HPTLC (high performance thin layer chromatography) with densitometric analysis. The results revealed a higher amount of isoorientin in healthy rinds of P. edulis (92.275 ± 0.610 mg L-1) than in rinds with typical symptoms of PWV (Passion fruit Woodiness Virus) infection (28.931 ± 0.346 mg L-1). The HPTLC data, allied to assays of radical scavenging activity, suggest the potential of P. edulis rinds as a natural source of flavonoids or as a possible functional food.