955 resultados para oceanography : general : climate and interannual variability
Resumo:
SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll data revealed strong interannual variability in fall phytoplankton dynamics in the Gulf of Maine, with 3 general features in any one year: (1) rapid chlorophyll increases in response to storm events in fall; (2) gradual chlorophyll increases in response to seasonal wind-and cooling-induced mixing that gradually deepens the mixed layer; and (3) the absence of any observable fall bloom. We applied a mixed-layer box model and a 1-dimensional physical-biological numerical model to examine the influence of physical forcing (surface wind, heat flux, and freshening) on the mixed-layer dynamics and its impact on the entrainment of deep-water nutrients and thus on the appearance of fall bloom. The model results suggest that during early fall, the surface mixed-layer depth is controlled by both wind-and cooling-induced mixing. Strong interannual variability in mixed-layer depth has a direct impact on short-and long-term vertical nutrient fluxes and thus the fall bloom. Phytoplankton concentrations over time are sensitive to initial pre-bloom profiles of nutrients. The strength of the initial stratification can affect the modeled phytoplankton concentration, while the timing of intermittent freshening events is related to the significant interannual variability of fall blooms.
Resumo:
IBAMar (http://www.ba.ieo.es/ibamar) is a regional database that puts together all physical and biochemical data obtained by multiparametric probes (CTDs equipped with different sensors), during the cruises managed by the Balearic Center of the Spanish Institute of Oceanography (COB-IEO). It has been recently extended to include data obtained with classical hydro casts using oceanographic Niskin or Nansen bottles. The result is a database that includes a main core of hydrographic data: temperature (T), salinity (S), dissolved oxygen (DO), fluorescence and turbidity; complemented by bio-chemical data: dissolved inorganic nutrients (phosphate, nitrate, nitrite and silicate) and chlorophyll-a. In IBAMar Database, different technologies and methodologies were used by different teams along the four decades of data sampling in the COB-IEO. Despite of this fact, data have been reprocessed using the same protocols, and a standard QC has been applied to each variable. Therefore it provides a regional database of homogeneous, good quality data. Data acquisition and quality control (QC): 94% of the data are CTDs Sbe911 and Sbe25. S and DO were calibrated on board using water samples, whenever a Rossetta was available (70% of the cases). All CTD data from Seabird CTDs were reviewed and post processed with the software provided by Sea-Bird Electronics. Data were averaged to get 1 dbar vertical resolution. General sampling methodology and pre processing are described in https://ibamardatabase.wordpress.com/home/). Manual QC include visual checks of metadata, duplicate data and outliers. Automatic QC include range check of variables by area (north of Balearic Islands, south of BI and Alboran Sea) and depth (27 standard levels), check for spikes and check for density inversions. Nutrients QC includes a preliminary control and a range check on the observed level of the data to detect outliers around objectively analyzed data fields. A quality flag is assigned as an integer number, depending on the result of the QC check.
Resumo:
Background: Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Results: Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. Conclusions: This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.
Resumo:
Mode of access: Internet.
Resumo:
Abstract The potential impacts of climate change and environmental variability are already evident in most parts of the world, which is witnessing increasing temperature rates and prolonged flood or drought conditions that affect agriculture activities and nature-dependent livelihoods. This study was conducted in Mwanga District in the Kilimanjaro region of Tanzania to assess the nature and impacts of climate change and environmental variability on agriculture-dependent livelihoods and the adaptation strategies adopted by small-scale rural farmers. To attain its objective, the study employed a mixed methods approach in which both qualitative and quantitative techniques were used. The study shows that farmers are highly aware of their local environment and are conscious of the ways environmental changes affect their livelihoods. Farmers perceived that changes in climatic variables such as rainfall and temperature had occurred in their area over the period of three decades, and associated these changes with climate change and environmental variability. Farmers’ perceptions were confirmed by the evidence from rainfall and temperature data obtained from local and national weather stations, which showed that temperature and rainfall in the study area had become more variable over the past three decades. Farmers’ knowledge and perceptions of climate change vary depending on the location, age and gender of the respondents. The findings show that the farmers have limited understanding of the causes of climatic conditions and environmental variability, as some respondents associated climate change and environmental variability with social, cultural and religious factors. This study suggests that, despite the changing climatic conditions and environmental variability, farmers have developed and implemented a number of agriculture adaptation strategies that enable them to reduce their vulnerability to the changing conditions. The findings show that agriculture adaptation strategies employ both planned and autonomous adaptation strategies. However, the study shows that increasing drought conditions, rainfall variability, declining soil fertility and use of cheap farming technology are among the challenges that limit effective implementation of agriculture adaptation strategies. This study recommends further research on the varieties of drought-resilient crops, the development of small-scale irrigation schemes to reduce dependence on rain-fed agriculture, and the improvement of crop production in a given plot of land. In respect of the development of adaptation strategies, the study recommends the involvement of the local farmers and consideration of their knowledge and experience in the farming activities as well as the conditions of their local environment. Thus, the findings of this study may be helpful at various levels of decision making with regard to the development of climate change and environmental variability policies and strategies towards reducing farmers’ vulnerability to current and expected future changes.
Resumo:
During the late Miocene, exchange between the Mediterranean Sea and Atlantic Ocean changed dramatically, culminating in the Messinian Salinity Crisis (MSC). Understanding Mediterranean-Atlantic exchange at that time could answer the enigmatic question of how so much salt built up within the Mediterranean, while furthering the development of a framework for future studies attempting to understand how changes may have impacted global thermohaline circulation. Due to their association with specific water masses at different scales, radiogenic Sr, Pb, and Nd isotope records were generated from various archives contained within marine deposits to endeavour to understand better late Miocene Mediterranean-Atlantic exchange. The archives used include foraminiferal calcite (Sr), fish teeth and bone (Nd), dispersed authigenic ferromanganese oxyhydroxides (Nd, Pb), and a ferromanganese crust (Pb). The primary focus is on sediments preserved at one end of the Betic corridor, a gateway that once connected the Mediterranean to the Atlantic through southern Spain, although other locations are investigated. The Betic gateway terminated within several marginal sub-basins before entering the Western Mediterranean; one of these is the Sorbas Basin, a well-studied location whose sediments have been astronomically tuned at high temporal resolution, providing the necessary age control for sub-precessional resolution records. Since the climatic history of the Mediterranean is strongly controlled by precessional changes in regional climate, the aim was to produce records at high (sub-precessional) temporal resolution, to be able to observe clearly any precessional cyclicity driven by regional climate which could be superimposed over longer trends. This goal was achieved for all records except the ferromanganese crust record. The 87Sr/86Sr isotope record (Ch. 3) shows precessional frequency excursions away from the global seawater curve. As precessional frequency oscillations are unexpected for this setting, a numerical box model was used to determine the mechanisms causing the excursions. To enable parameterisation of model variables, regional Sr characteristics, data from general circulation model HadCM3L, and new benthic foraminiferal assemblage data are employed. The model results imply that the Sorbas Basin likely had a positive hydrologic budget in the late Miocene, very different to that of today. Moreover, the model indicates that the mechanism controlling the Sr isotope ratio of Sorbas Basin seawater was not restriction, but a lack of density-driven exchange with the Mediterranean. Beyond improving our understanding of how marginal Mediterranean sub-basins may evolve different isotope signatures, these results have implications for astronomical tuning and stratigraphy in the region, findings which are crucial considering the geological and climatic history of the late Miocene Mediterranean is based entirely on marginal deposits. An improved estimate for the Nd isotope signature of late Miocene Mediterranean Outflow (MO) was determined by comparing Nd isotope signatures preserved in the deeper Alborán Sea at ODP Site 978 with literature data as well as the signature preserved in the Sorbas Basin (Ch. 4; -9.34 to -9.92 ± 0.37 εNd(t)). It was also inferred that it is unlikely that Nd isotopes can be used reliably to track changes in circulation within the shallow settings characteristic of the Mediterranean-Atlantic connections; this is significant in light of a recent publication documenting corridor closure using Nd isotopes. Both conclusions will prove useful for future studies attempting to understand changes in Mediterranean-Atlantic exchange. Excursions to high values, with precessional frequency, are also observed in the radiogenic Pb isotope record for the Sorbas Basin (Ch. 5). Widening the scope to include locations further away from the gateways, records were produced for late Miocene sections on Sicily and Northern Italy, and similar precessional frequency cyclicity was observed in the Pb isotope records for these sites as well. Comparing these records to proxies for Saharan dust and available whole rock data indicates that, while further analysis is necessary to draw strong conclusions, enhanced dust production during insolation minima may be driving the observed signal. These records also have implications for astronomical tuning; peaks in Pb isotope records driven by Saharan dust may be easier to connect directly to the insolation cycle, providing improved astronomical tuning points. Finally, a Pb isotope record derived using in-situ laser ablation performed on ferromanganese crust 3514-6 from the Lion Seamount, located west of Gibraltar within the MO plume, has provided evidence that plume depth shifted during the Pliocene. The record also suggests that Pb isotopes may not be a suitable proxy for changes in late Miocene Mediterranean-Atlantic exchange, since the Pb isotope signatures of regional water masses are too similar. To develop this record, the first published instance of laser ablation derived 230Thexcess measurements are combined with 10Be dating.
Resumo:
Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrábida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long- and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations.
Resumo:
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south-eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O-N ha−1 over the 2-year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2-year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4-C ha−1 day−1 during extended dry periods to less than 2–5 g CH4-C ha−1 day−1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4-C ha−1 yr−1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one-third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability
Resumo:
The importance of repair, maintenance, minor alteration, and addition (RMAA) works is increasing in many built societies. When the volume of RMAA works increases, the occurrence of RMAA accidents also increases. Safety of RMAA works deserves more attention; however, research in this important topic remains limited. Safety climate is considered a key factor that influences safety performance. The present study aims to determine the relationships between safety climate and safety performance of RMAA works, thereby offering recommendations on improving RMAA safety. Questionnaires were dispatched to private property management companies, maintenance sections of quasi-government developers and their subcontractors, RMAA sections of general contractors, small RMAA contractors, building services contractors and trade unions in Hong Kong. In total, data from 396 questionnaires were collected from RMAA workers. The sample was divided into two equal-sized sub-samples. On the first sub-sample SEM was used to test the model, which was validated on the second sub-sample. The model revealed a significant negative relationship between RMAA safety climate and incidence of self-reported near misses and injuries, and significant positive relationships between RMAA safety climate and safety participation and safety compliance respectively. Higher RMAA safety climate was positively associated with a lower incidence of self-reported near misses and injuries and higher levels of safety participation and safety compliance.
Resumo:
Influenza is associated with substantial disease burden [ 1]. Development of a climate-based early warning system for in fluenza epidemics has been recommended given the signi fi - cant association between climate variability and influenza activity [2]. Brisbane is a subtropical city in Australia and offers free in fluenza vaccines to residents aged ≥65 years considering their high risks in developing life-threatening complications, especially for in fluenza A predominant seasons. Hong Kong is an international subtropical city in Eastern Asia and plays a crucial role in global infectious diseases transmission dynamics via the international air transportation network [3, 4]. We hypothesized that Hong Kong in fluenza surveillance data could provide a signal for in fluenza epidemics in Brisbane [ 4]. This study aims to develop an epidemic forecasting model for influenza A in Brisbane elders, by combining climate variability and Hong Kong in fluenza A surveillance data. Weekly numbers of laboratoryconfirmed influenza A positive isolates for people aged ≥65 years from 2004 to 2009 were obtained for Brisbane from Queensland Health, Australia, and for Hong Kong from Queen Mary Hospital (QMH). QMH is the largest public hospital located in Hong Kong Island, and in fluenza surveillance data from this hospital have been demonstrated to be representative for influenza circulation in the entirety of Hong Kong [ 5]. The Brisbane in fluenza A epidemics occurred during July –September, whereas the Hong Kong in fluenza A epidemics occurred during February –March and May –August.
Resumo:
Rainfall variability is a major challenge to sustainable grazing management in northern Australia, with management often complicated further by large, spatially-heterogeneous paddocks. This paper presents the latest grazing research and associated bio-economic modelling from northern Australia and assesses the extent to which current recommendations to manage for these issues are supported. Overall, stocking around the safe long-term carrying capacity will maintain land condition and maximise long-term profitability. However, stocking rates should be varied in a risk-averse manner as pasture availability varies between years. Periodic wet-season spelling is also essential to maintain pasture condition and allow recovery of overgrazed areas. Uneven grazing distributions can be partially managed through fencing, providing additional water-points and in some cases patch-burning, although the economics of infrastructure development are extremely context-dependent. Overall, complex multi-paddock grazing systems do not appear justified in northern Australia. Provided the key management principles outlined above are applied in an active, adaptive manner, acceptable economic and environmental outcomes will be achieved irrespective of the grazing system applied.
Resumo:
The structure and function of northern ecosystems are strongly influenced by climate change and variability and by human-induced disturbances. The projected global change is likely to have a pronounced effect on the distribution and productivity of different species, generating large changes in the equilibrium at the tree-line. In turn, movement of the tree-line and the redistribution of species produce feedback to both the local and the regional climate. This research was initiated with the objective of examining the influence of natural conditions on the small-scale spatial variation of climate in Finnish Lapland, and to study the interaction and feedback mechanisms in the climate-disturbances-vegetation system near the climatological border of boreal forest. The high (1 km) resolution spatial variation of climate parameters over northern Finland was determined by applying the Kriging interpolation method that takes into account the effect of external forcing variables, i.e., geographical coordinates, elevation, sea and lake coverage. Of all the natural factors shaping the climate, the geographical position, local topography and altitude proved to be the determining ones. Spatial analyses of temperature- and precipitation-derived parameters based on a 30-year dataset (1971-2000) provide a detailed description of the local climate. Maps of the mean, maximum and minimum temperatures, the frost-free period and the growing season indicate that the most favourable thermal conditions exist in the south-western part of Lapland, around large water bodies and in the Kemijoki basin, while the coldest regions are in highland and fell Lapland. The distribution of precipitation is predominantly longitudinally dependent but with the definite influence of local features. The impact of human-induced disturbances, i.e., forest fires, on local climate and its implication for forest recovery near the northern timberline was evaluated in the Tuntsa area of eastern Lapland, damaged by a widespread forest fire in 1960 and suffering repeatedly-failed vegetation recovery since that. Direct measurements of the local climate and simulated heat and water fluxes indicated the development of a more severe climate and physical conditions on the fire-disturbed site. Removal of the original, predominantly Norway spruce and downy birch vegetation and its substitution by tundra vegetation has generated increased wind velocity and reduced snow accumulation, associated with a large variation in soil temperature and moisture and deep soil frost. The changed structural parameters of the canopy have determined changes in energy fluxes by reducing the latter over the tundra vegetation. The altered surface and soil conditions, as well as the evolved severe local climate, have negatively affected seedling growth and survival, leading to more unfavourable conditions for the reproduction of boreal vegetation and thereby causing deviations in the regional position of the timberline. However it should be noted that other factors, such as an inadequate seed source or seedbed, the poor quality of the soil and the intensive logging of damaged trees could also exacerbate the poor tree regeneration. In spite of the failed forest recovery at Tunsta, the position and composition of the timberline and tree-line in Finnish Lapland may also benefit from present and future changes in climate. The already-observed and the projected increase in temperature, the prolonged growing season, as well as changes in the precipitation regime foster tree growth and new regeneration, resulting in an advance of the timberline and tree-line northward and upward. This shift in the distribution of vegetation might be decelerated or even halted by local topoclimatic conditions and by the expected increase in the frequency of disturbances.
Resumo:
The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.
Resumo:
(PDF contains 246 pages)
Resumo:
Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and CTD data. Surface current velocity, divergence, and upwelling velocity were derived from ship drift reports. Surface wind velocity, wind stress, wind divergence, wind stress curl, and Ekman pumping velocity were derived from gridded pseudostress data obtained from Florida State University. Seasonal maps of these variables, and their deviations from the annual mean, show different patterns of variation in Equatorial (S°S-SON) and Tropical Surface Water (SOlS0N). Seasonal shifts in the trade winds, which affect the strength of equatorial upwelling and the North Equatorial Countercurrent, cause seasonal variations in most variables. Seasonal and interannual variability of surface temperature, mixed layer depth, thermocline depth and wind stress were quantified. Surface temperature, mixed layer depth and thermocline depth, but not local wind stress, are less variable in Tropical Surface Water than in Equatorial Surface Water. Seasonal and interannual variability are close to equal in most of the ETP, within factors of 2 or less. (PDF file contains 70 pages.)