991 resultados para nuclear proteins
Deregulated MHC class II transactivator expression leads to a strong Th2 bias in CD4+ T lymphocytes.
Resumo:
The MHC class II (MHC-II) transactivator (CIITA) is the master transcriptional regulator of genes involved in MHC-II-restricted Ag presentation. Fine tuning of CIITA gene expression determines the cell type-specific expression of MHC-II genes. This regulation is achieved by the selective usage of multiple CIITA promoters. It has recently been suggested that CIITA also contributes to Th cell differentiation by suppressing IL-4 expression in Th1 cells. In this study, we show that endogenous CIITA is expressed at low levels in activated mouse T cells. Importantly CIITA is not regulated differentially in murine and human Th1 and Th2 cells. Ectopic expression of a CIITA transgene in multiple mouse cell types including T cells, does not interfere with normal development of CD4(+) T cells. However, upon TCR activation the CIITA transgenic CD4(+) T cells preferentially differentiate into IL-4-secreting Th2-type cells. These results imply that CIITA is not a direct Th1-specific repressor of the IL-4 gene and that tight control over the expression of CIITA and MHC-II is required to maintain the normal balance between Th1 and Th2 responses.
Resumo:
Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.
Resumo:
One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples.
Resumo:
The transcription factor Aiolos (also known as IKZF3), a member of the Ikaros family of zinc-finger proteins, plays an important role in the control of B lymphocyte differentiation and proliferation. Previously, multiple isoforms of Ikaros family members arising from differential splicing have been described and we now report a number of novel isoforms of Aiolos. It has been demonstrated that full-length Ikaros family isoforms localize to heterochromatin and that they can associate with complexes containing histone deacetylase (HDAC). In this study, for the first time we directly investigate the cellular localization of various Aiolos isoforms, their ability to heterodimerize with Ikaros and associate with HDAC-containing complexes, and the effects on histone modification and binding to putative targets. Our work demonstrates that the cellular activities of Aiolos isoforms are dependent on combinations of various functional domains arising from the differential splicing of mRNA transcripts. These data support the general principle that the function of an individual protein is modulated through alternative splicing, and highlight a number of potential implications for Aiolos in normal and aberrant lymphocyte function.
Resumo:
The epithelial Na(+) channel (ENaC), located in the apical membrane of renal aldosterone-responsive epithelia, plays an essential role in controlling the Na(+) balance of extracellular fluids and hence blood pressure. As of now, ENaC is the only Na(+) transport protein for which genetic evidence exists for its involvement in the genesis of both hypertension (Liddle's syndrome) and hypotension (pseudohypoaldosteronism type 1). The regulation of ENaC involves a variety of hormonal signals (aldosterone, vasopressin, insulin), but the molecular mechanisms behind this regulation are mostly unknown. Two regulatory proteins have gained interest in recent years: the ubiquitin-protein ligase neural precursor cell-expressed, developmentally downregulated gene 4 isoform Nedd4-2, which negatively controls ENaC cell surface expression, and serum glucocorticoid-inducible kinase 1 (Sgk1), which is an aldosterone- and insulin-dependent, positive regulator of ENaC density at the plasma membrane. Here, we summarize present ideas about Sgk1 and Nedd4-2 and the lines of experimental evidence, suggesting that they act sequentially in the regulatory pathways governed by aldosterone and insulin and regulate ENaC number at the plasma membrane.
Resumo:
In insulin-secreting cells, cytokines activate the c-Jun N-terminal kinase (JNK), which contributes to a cell signaling towards apoptosis. The JNK activation requires the presence of the murine scaffold protein JNK-interacting protein 1 (JIP-1) or human Islet-brain 1(IB1), which organizes MLK3, MKK7 and JNK for proper signaling specificity. Here, we used adenovirus-mediated gene transfer to modulate IB1/JIP-1 cellular content in order to investigate the contribution of IB1/JIP-1 to beta-cell survival. Exposure of the insulin-producing cell line INS-1 or isolated rat pancreatic islets to cytokines (interferon-gamma, tumor necrosis factor-alpha and interleukin-1beta) induced a marked reduction of IB1/JIP-1 content and a concomitant increase in JNK activity and apoptosis rate. This JNK-induced pro-apoptotic program was prevented in INS-1 cells by overproducing IB1/JIP-1 and this effect was associated with inhibition of caspase-3 cleavage. Conversely, reducing IB1/JIP-1 content in INS-1 cells and isolated pancreatic islets induced a robust increase in basal and cytokine-stimulated apoptosis. In heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene, the reduction in IB1/JIP-1 content in happloinsufficient isolated pancreatic islets was associated with an increased JNK activity and basal apoptosis. These data demonstrate that modulation of the IB1-JIP-1 content in beta cells is a crucial regulator of JNK signaling pathway and of cytokine-induced apoptosis.
Resumo:
INTRODUCTION Recurrence risk in breast cancer varies throughout the follow-up time. We examined if these changes are related to the level of expression of the proliferation pathway and intrinsic subtypes. METHODS Expression of estrogen and progesterone receptor, Ki-67, human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR) and cytokeratin 5/6 (CK 5/6) was performed on tissue-microarrays constructed from a large and uniformly managed series of early breast cancer patients (N = 1,249). Subtype definitions by four biomarkers were as follows: luminal A (ER + and/or PR+, HER2-, Ki-67 <14), luminal B (ER + and/or PR+, HER2-, Ki-67 ≥14), HER2-enriched (any ER, any PR, HER2+, any Ki-67), triple-negative (ER-, PR-, HER2-, any Ki-67). Subtype definitions by six biomarkers were as follows: luminal A (ER + and/or PR+, HER2-, Ki-67 <14, any CK 5/6, any EGFR), luminal B (ER + and/or PR+, HER2-, Ki-67 ≥14, any CK 5/6, any EGFR), HER2-enriched (ER-, PR-, HER2+, any Ki-67, any CK 5/6, any EGFR), Luminal-HER2 (ER + and/or PR+, HER2+, any Ki-67, any CK 5/6, any EGFR), Basal-like (ER-, PR-, HER2-, any Ki-67, CK5/6+ and/or EGFR+), triple-negative nonbasal (ER-, PR-, HER2-, any Ki-67, CK 5/6-, EGFR-). Each four- or six-marker defined intrinsic subtype was divided in two groups, with Ki-67 <14% or with Ki-67 ≥14%. Recurrence hazard rate function was determined for each intrinsic subtype as a whole and according to Ki-67 value. RESULTS Luminal A displayed a slow risk increase, reaching its maximum after three years and then remained steady. Luminal B presented most of its relapses during the first five years. HER2-enriched tumors show a peak of recurrence nearly twenty months post-surgery, with a greater risk in Ki-67 ≥14%. However a second peak occurred at 72 months but the risk magnitude was greater in Ki-67 <14%. Triple negative tumors with low proliferation rate display a smooth risk curve, but with Ki-67 ≥14% show sharp peak at nearly 18 months. CONCLUSIONS Each intrinsic subtype has a particular pattern of relapses over time which change depending on the level of activation of the proliferation pathway assessed by Ki-67. These findings could have clinical implications both on adjuvant treatment trial design and on the recommendations concerning the surveillance of patients.
Resumo:
Islet-brain1 (IB1) or c-Jun NH2 terminal kinase interacting protein-1 (JIP-1), the product of the MAPK8IP1 gene, functions as a neuronal scaffold protein to allow signalling specificity. IB1/JIP-1 interacts with many cellular components including the reelin receptor ApoER2, the low-density lipoprotein receptor-related protein (LRP), kinesin and the Alzheimer's amyloid precursor protein. Coexpression of IB1/JIP-1 with other components of the c-Jun NH2 terminal-kinase (JNK) pathway activates the JNK activity; conversely, selective disruption of IB1/JIP-1 in mice reduces the stress-induced apoptosis of neuronal cells. We therefore hypothesized that IB1/JIP-1 is a risk factor for Alzheimer's disease (AD). By immunocytochemistry, we first colocalized the presence of IB1/JIP-1 with JNK and phosphorylated tau in neurofibrillary tangles. We next identified a -499A>G polymorphism in the 5' regulatory region of the MAPK8IP1 gene. In two separate French populations the -499A>G polymorphism of MAPK8IP1 was not associated with an increased risk to AD. However, when stratified on the +766C>T polymorphism of exon 3 of the LRP gene, the IB1/JIP-1 polymorphism was strongly associated with AD in subjects bearing the CC genotype in the LRP gene. The functional consequences of the -499A>G polymorphism of MAPK8IP1 was investigated in vitro. In neuronal cells, the G allele increased transcriptional activity and was associated with an enhanced binding activity. Taken together, these data indicate that the increased transcriptional activity in the presence of the G allele of MAPK8IP1 is a risk factor to the onset of in patients bearing the CC genotype of the LRP gene.
Resumo:
The dynamic properties of helix 12 in the ligand binding domain of nuclear receptors are a major determinant of AF-2 domain activity. We investigated the molecular and structural basis of helix 12 mobility, as well as the involvement of individual residues with regard to peroxisome proliferator-activated receptor alpha (PPARalpha) constitutive and ligand-dependent transcriptional activity. Functional assays of the activity of PPARalpha helix 12 mutants were combined with free energy molecular dynamics simulations. The agreement between the results from these approaches allows us to make robust claims concerning the mechanisms that govern helix 12 functions. Our data support a model in which PPARalpha helix 12 transiently adopts a relatively stable active conformation even in the absence of a ligand. This conformation provides the interface for the recruitment of a coactivator and results in constitutive activity. The receptor agonists stabilize this conformation and increase PPARalpha transcription activation potential. Finally, we disclose important functions of residues in PPARalpha AF-2, which determine the positioning of helix 12 in the active conformation in the absence of a ligand. Substitution of these residues suppresses PPARalpha constitutive activity, without changing PPARalpha ligand-dependent activation potential.
Resumo:
The mammalian Ku70 and Ku86 proteins form a heterodimer that binds to the ends of double-stranded DNA in vitro and is required for repair of radiation-induced strand breaks and V(D)J recombination [1,2]. Deletion of the Saccharomyces cerevisiae genes HDF1 and HDF2--encoding yKu70p and yKu80p, respectively--enhances radiation sensitivity in a rad52 background [3,4]. In addition to repair defects, the length of the TG-rich repeat on yeast telomere ends shortens dramatically [5,6]. We have shown previously that in yeast interphase nuclei, telomeres are clustered in a limited number of foci near the nuclear periphery [7], but the elements that mediate this localization remained unknown. We report here that deletion of the genes encoding yKu70p or its partner yKu80p altered the positioning of telomeric DNA in the yeast nucleus. These are the first mutants shown to affect the subnuclear localization of telomeres. Strains deficient for either yKu70p or yKu80p lost telomeric silencing, although they maintained repression at the silent mating-type loci. In addition, the telomere-associated silencing factors Sir3p and Sir4p and the TG-repeat-binding protein Rap1p lost their punctate pattern of staining and became dispersed throughout the nucleoplasm. Our results implicate the yeast Ku proteins directly in aspects of telomere organization, which in turn affects the repression of telomere-proximal genes.
Resumo:
Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2(Cre/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity.
Resumo:
PURPOSE: To investigate the influence of demethylation with 5-aza-cytidine (AZA) on radiation sensitivity and to define the intrinsic radiation sensitivity of methylation deficient colorectal carcinoma cells. METHODS AND MATERIALS: Radiation sensitizing effects of AZA were investigated in four colorectal carcinoma cell lines (HCT116, SW480, L174 T, Co115), defining influence of AZA on proliferation, clonogenic survival, and cell cycling with or without ionizing radiation. The methylation status for cancer or DNA damage response-related genes silenced by promoter methylation was determined. The effect of deletion of the potential target genes (DNMT1, DNMT3b, and double mutants) on radiation sensitivity was analyzed. RESULTS: AZA showed radiation sensitizing properties at >or=1 micromol/l, a concentration that does not interfere with the cell cycle by itself, in all four tested cell lines with a sensitivity-enhancing ratio (SER) of 1.6 to 2.1 (confidence interval [CI] 0.9-3.3). AZA successfully demethylated promoters of p16 and hMLH1, genes associated with ionizing radiation response. Prolonged exposure to low-dose AZA resulted in sustained radiosensitivity if associated with persistent genomic hypomethylation after recovery from AZA. Compared with maternal HCT116 cells, DNMT3b-defcient deficient cells were more sensitive to radiation with a SER of 2.0 (CI 0.9-2.1; p = 0.03), and DNMT3b/DNMT1-/- double-deficient cells showed a SER of 1.6 (CI 0.5-2.7; p = 0.09). CONCLUSIONS: AZA-induced genomic hypomethylation results in enhanced radiation sensitivity in colorectal carcinoma. The mediators leading to sensitization remain unknown. Defining the specific factors associated with radiation sensitization after genomic demethylation may open the way to better targeting for the purpose of radiation sensitization.
Resumo:
Sleep and wakefulness are complex behaviors that are influenced by many genetic and environmental factors, which are beginning to be discovered. The contribution of genetic components to sleep disorders is also increasingly recognized as important. Point mutations in the prion protein, period 2, and the prepro-hypocretin/orexin gene have been found as the cause of a few sleep disorders but the possibility that other gene defects may contribute to the pathophysiology of major sleep disorders is worth in-depth investigations. However, single gene disorders are rare and most common disorders are complex in terms of their genetic susceptibility, environmental effects, gene-gene, and gene-environment interactions. We review here the current progress in the genetics of normal and pathological sleep.
Resumo:
The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.
Resumo:
Through their capacity to sense danger signals and to generate active interleukin-1β (IL-1β), inflammasomes occupy a central role in the inflammatory response. In contrast to IL-1β, little is known about how IL-1α is regulated. We found that all inflammasome activators also induced the secretion of IL-1α, leading to the cosecretion of both IL-1 cytokines. Depending on the type of inflammasome activator, release of IL-1α was inflammasome dependent or independent. Calcium influx induced by the opening of cation channels was sufficient for the inflammasome-independent IL-1α secretion. In both cases, IL-1α was released primarily in a processed form, resulting from intracellular cleavage by calpain-like proteases. Inflammasome-caspase-1-dependent release of IL-1α and IL-1β was independent of caspase-1 catalytic activity, defining a mode of action for caspase-1. Because inflammasomes contribute to the pathology of numerous chronic inflammatory diseases such as gout and diabetes, IL-1α antagonists may be beneficial in the treatment of these disorders.