945 resultados para nanowires,nanotechnology,plasmonic effect,laser,plasma,nanostructured


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theories and numerical modeling are fundamental tools for understanding, optimizing and designing present and future laser-plasma accelerators (LPAs). Laser evolution and plasma wave excitation in a LPA driven by a weakly relativistically intense, short-pulse laser propagating in a preformed parabolic plasma channel, is studied analytically in 3D including the effects of pulse steepening and energy depletion. At higher laser intensities, the process of electron self-injection in the nonlinear bubble wake regime is studied by means of fully self-consistent Particle-in-Cell simulations. Considering a non-evolving laser driver propagating with a prescribed velocity, the geometrical properties of the non-evolving bubble wake are studied. For a range of parameters of interest for laser plasma acceleration, The dependence of the threshold for self-injection in the non-evolving wake on laser intensity and wake velocity is characterized. Due to the nonlinear and complex nature of the Physics involved, computationally challenging numerical simulations are required to model laser-plasma accelerators operating at relativistic laser intensities. The numerical and computational optimizations, that combined in the codes INF&RNO and INF&RNO/quasi-static give the possibility to accurately model multi-GeV laser wakefield acceleration stages with present supercomputing architectures, are discussed. The PIC code jasmine, capable of efficiently running laser-plasma simulations on Graphics Processing Units (GPUs) clusters, is presented. GPUs deliver exceptional performance to PIC codes, but the core algorithms had to be redesigned for satisfying the constraints imposed by the intrinsic parallelism of the architecture. The simulation campaigns, run with the code jasmine for modeling the recent LPA experiments with the INFN-FLAME and CNR-ILIL laser systems, are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uno dei maggiori obiettivi della ricerca nel campo degli acceleratori basati su interazione laser-plasma è la realizzazione di una sorgente compatta di raggi x impulsati al femtosecondo. L’interazione tra brevi impulsi laser e un plasma, a energie relativistiche, ha recentemente portato a una nuova generazione di sorgenti di raggi x con le proprietà desiderate. Queste sorgenti, basate sulla radiazione emessa da elettroni accelerati nel plasma, hanno in comune di essere compatte, produrre radiazione collimata, incoerente e impulsata al femtosecondo. In questa tesi vengono presentati alcuni metodi per ottenere raggi x da elettroni accelerati per interazione tra laser e plasma: la radiazione di betatrone da elettroni intrappolati e accelerati nel cosiddetto “bubble regime”, la radiazione di sincrotrone da elettroni posti in un ondulatore convenzionale con lunghezza dell’ordine dei metri e la radiazione ottenuta dal backscattering di Thomson. Vengono presentate: la fisica alla base di tali metodi, simulazioni numeriche e risultati sperimentali per ogni sorgente di raggi x. Infine, viene discussa una delle più promettenti applicazioni fornite dagli acceleratori basati su interazione tra laser e plasma: il Free-electron laser nello spettro dei raggi x, capace di fornire intensità 108-1010 volte più elevate rispetto alle altre sorgenti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational study of line-focus generation was done using a self-written ray-tracing code and compared to experimental data. Two line-focusing geometries were compared, i.e., either exploiting the sagittal astigmatism of a tilted spherical mirror or using the spherical aberration of an off-axis- illuminated spherical mirror. Line focusing by means of astigmatism or spherical aberration showed identical results as expected for the equivalence of the two frames of reference. The variation of the incidence angle on the target affects the line-focus length, which affects the amplification length such that as long as the irradiance is above the amplification threshold, it is advantageous to have a longer line focus. The amplification threshold is physically dependent on operating parameters and plasma-column conditions and in the present study addresses four possible cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical study of the relativistic interaction of a linearly-polarized laser-field of w frequency with highly overdense plasma is presented. Very intense high harmonics are generated produced by relativistic mirrors effects due to the relativistic electron plasma oscillation. Also, in agreement with 1D Particle-In-Cell Simulations (PICS), the model self-consistently explains the transition between the sheath inverse bremsstrahlung (SIB) absorption regime and the J×B heating (responsible for the 2w electron bunches), as well as the mean electron energy.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of electromagnetic radiation with plasmas is studied in relativistic four-vector formalism. A gauge and Lorentz invariant ponderomotive four-force is derived from the time dependent nonlinear three-force of Hora (1985). This four-force, due to its Lorentz invariance, contains new magnetic field terms. A new gauge and Lorentz invariant model of the response of plasma to electromagnetic radiation is then devised. An expression for the dispersion relation is obtained from this model. It is then proved that the magnetic permeability of plasma is unity for a general reference frame. This is an important result since it has been previously assumed in many plasma models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal nanowires (NWs) - nanostructures 20-100 nm in diameter and up to tens of micrometers long - behave as waveguides when irradiated with light with wavelength much greater than their diameter. This is due to collective excitations of free electrons (plasmons) in the metal which couple to light and travel on the surface of the nanowire. This effect can be used to efficiently absorb laser pulses to produce dense and hot plasma on special nanostructured targets with metal nanowires vertically aligned on the surface. In this thesis work, nanostructured targets with different parameters (length, diameter, metal and fabrication process) have been irradiated with infrared laser light. X-ray flux emitted by the cooling plasma is measured during irradiation, and the depth of craters formed on the target is measured later. This data is used to choose which target parameters are best for plasma production. Different targets are compared with each other and against a control, non-nanostructured (bulk) target. As will be shown, highly significant (> 5 sigma) differences are found between targets with different nanostructures, and between nanostructured and bulk target. This differences are very difficult to explain whithout accounting for the nanostructures in the targets. Therefore, data collected and analized in this thesis work supports the hypotesys that nanostructured targets perform better than bulk targets for laser plasma production purposes, and provides useful indications for optimization of NWS' parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An advanced combination of numerical models, including plasma sheath, ion- and radical-induced species creation and plasma heating effects on the surface and within a Au catalyst nanoparticle, is used to describe the catalyzed growth of Si nanowires in the sheath of a low-temperature and low-pressure plasma. These models have been used to explain the higher nanowire growth rates, low-energy barriers, much thinner Si nanowire nucleation and the less effective Gibbs–Thomson effect in reactive plasma processes, compared with those of neutral gas thermal processes. The effects of variation in the plasma sheath parameters and substrate potential on Si nanowire nucleation and growth have also been investigated. It is shown that increasing the plasma-related effects leads to decreases in the nucleation energy barrier and the critical nanoparticle radius, with the Gibbs–Thomson effect diminished, even at low temperatures. The results obtained are consistent with available experimental results and open a path toward the energy- and matter-efficient nucleation and growth of a broad range of one-dimensional quantum structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been carried out to understand the influence of ambient gases on the dynamics of laser-blow-off plumes of multi-layered LiF–C thin film. Plume images at various time intervals ranging from 100 to 3000 ns have been recorded using an intensified CCD camera. Enhancement in the plume intensity and change in size and shape occurs on introducing ambient gases and these changes are highly dependent on the nature and composition of the ambient gas used. Velocity of the plume was found to be higher in helium ambient whereas intensity enhancement is greater in argon environment. The plume shapes have maximum size at 10−2 and 10−1 Torr of Ar and He pressures, respectively. As the background pressure increases further (>10−2 Torr: depending on the nature of gas), the plume gets compressed/focused in the lateral direction. Internal structure formation and turbulences are observed at higher pressures (>10−1 Torr) in both ambient gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal foil targets were irradiated with 1 mu m wavelength (lambda) laser pulses of 5 ps duration and focused intensities (I) of up to 4x10(19) W cm(-2), giving values of both I lambda(2) and pulse duration comparable to those required for fast ignition inertial fusion. The divergence of the electrons accelerated into the target was determined from spatially resolved measurements of x-ray K-alpha emission and from transverse probing of the plasma formed on the back of the foils. Comparison of the divergence with other published data shows that it increases with I lambda(2) and is independent of pulse duration. Two-dimensional particle-in-cell simulations reproduce these results, indicating that it is a fundamental property of the laser-plasma interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unique features and benefits of the plasma-aided nanofabrication are considered by using the "plasma-building block" approach, which is based on plasma diagnostics and nanofilm characterization, cross-referenced by numerical simulation of generation and dynamics of building blocks in the gas phase, their interaction with nanostructured surfaces, and ab initio simulation of chemical structure of relevant nanoassemblies. The examples include carbon nanotip microemitter structures, semiconductor quantum dots and nanowires synthesized in the integrated plasma-aided nanofabrication facility.