739 resultados para model-based learning
Resumo:
Model-based testing (MBT) relies on models of a system under test and/or its environment to derive test cases for the system. This paper discusses the process of MBT and defines a taxonomy that covers the key aspects of MBT approaches. It is intended to help with understanding the characteristics, similarities and differences of those approaches, and with classifying the approach used in a particular MBT tool. To illustrate the taxonomy, a description of how three different examples of MBT tools fit into the taxonomy is provided.
Resumo:
Critical analysis and problem-solving skills are two graduate attributes that are important in ensuring that graduates are well equipped in working across research and practice settings within the discipline of psychology. Despite the importance of these skills, few psychology undergraduate programmes have undertaken any systematic development, implementation, and evaluation of curriculum activities to foster these graduate skills. The current study reports on the development and implementation of a tutorial programme designed to enhance the critical analysis and problem-solving skills of undergraduate psychology students. Underpinned by collaborative learning and problem-based learning, the tutorial programme was administered to 273 third year undergraduate students in psychology. Latent Growth Curve Modelling revealed that students demonstrated a significant linear increase in self-reported critical analysis and problem-solving skills across the tutorial programme. The findings suggest that the development of inquiry-based curriculum offers important opportunities for psychology undergraduates to develop critical analysis and problem-solving skills.
Resumo:
This paper reports outcomes of a study focussed on discovering qualitatively different ways students' experience problem-based learning in virtual space. A well accepted and documented qualitative research method was adopted for this study. Five qualitatively different conceptions are described, each revealing characteristics of increasingly complex student experiences. Establishing characteristics of these more complex experiences assists teachers in facilitating students engagement and encouraging deeper learning.
Resumo:
We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms using indirect infer- ence. We embed this approach within a sequential Monte Carlo algorithm that is completely adaptive. This methodological development was motivated by an application involving data on macroparasite population evolution modelled with a trivariate Markov process. The main objective of the analysis is to compare inferences on the Markov process when considering two di®erent indirect mod- els. The two indirect models are based on a Beta-Binomial model and a three component mixture of Binomials, with the former providing a better ¯t to the observed data.
Resumo:
Fluid–Structure Interaction (FSI) problem is significant in science and engineering, which leads to challenges for computational mechanics. The coupled model of Finite Element and Smoothed Particle Hydrodynamics (FE-SPH) is a robust technique for simulation of FSI problems. However, two important steps of neighbor searching and contact searching in the coupled FE-SPH model are extremely time-consuming. Point-In-Box (PIB) searching algorithm has been developed by Swegle to improve the efficiency of searching. However, it has a shortcoming that efficiency of searching can be significantly affected by the distribution of points (nodes in FEM and particles in SPH). In this paper, in order to improve the efficiency of searching, a novel Striped-PIB (S-PIB) searching algorithm is proposed to overcome the shortcoming of PIB algorithm that caused by points distribution, and the two time-consuming steps of neighbor searching and contact searching are integrated into one searching step. The accuracy and efficiency of the newly developed searching algorithm is studied on by efficiency test and FSI problems. It has been found that the newly developed model can significantly improve the computational efficiency and it is believed to be a powerful tool for the FSI analysis.
Resumo:
Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.
Resumo:
The aim of this study is to investigate the stress relaxation behavior of single chondrocytes using the Porohyperelastic (PHE) model and inverse Finite Element Analysis (FEA). Firstly, based on Atomic Force Microscopy (AFM) technique, we have found that the chondrocytes exhibited stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. Next, we have applied the inverse FEA technique to determine necessary material parameters for PHE model to simulate this stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that this PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.
Resumo:
Active and collaborative learning are becoming essential strategies to attract, engage and retain students. These methods have been adopted within the Science and Engineering Faculty of Queensland University of Technology for use in its Science, Information Technology and Engineering degrees. This paper describes the adoption and application of these techniques in a specific first year unit in a new Bachelor of Information Technology degree which has majors in Computer Science and Information Systems. The paper reports on the design, development and implementation of this foundation subject and discusses how it uses active and collaborative learning to teach design thinking through a series of design challenges, and how it uses critiquing and reflection to ensure that students become more aware of design and team processes.
Resumo:
This paper provides a first look at the acceptance of Accountable-eHealth systems, a new genre of eHealth systems, designed to manage information privacy concerns that hinder the proliferation of eHealth. The underlying concept of AeH systems is appropriate use of information through after-the-fact accountability for intentional misuse of information by healthcare professionals. An online questionnaire survey was utilised for data collection from three educational institutions in Queensland, Australia. A total of 23 hypothesis relating to 9 constructs were tested using a structural equation modelling technique. A total of 334 valid responses were received. The cohort consisted of medical, nursing and other health related students studying at various levels in both undergraduate and postgraduate courses. The hypothesis testing disproved 7 hypotheses. The empirical research model developed was capable of predicting 47.3% of healthcare professionals’ perceived intention to use AeH systems. A validation of the model with a wider survey cohort would be useful to confirm the current findings.
Resumo:
Aim Evaluation or assessment of competence is an important step to ensure the safety and efficacy of health professionals, including dietitians. Most competency-based assessment studies are focussed on valid and reliable methods of assessment for the preparation of entry-level dietitians, few papers have explored student dietitians’ perceptions of these evaluations. This study aimed to explore the perceptions of recent graduates from accredited nutrition and dietetics training programs in Australia. It also aimed to establish the relevance of competency-based assessment to adequately prepare them for entry-level work roles. Methods A purposive sample of newly-graduated dietitians with a range of assessment experiences and varied employment areas was recruited. A qualitative approach, using in-depth interviews with 13 graduates, with differing assessment experiences was undertaken. Graduates were asked to reflect upon their competency-based assessment experiences whilst a student. Data was thematically analysed by multiple authors. Results Four themes emerged from the data analysis: (i) Transparency and consistency are critical elements of work-based competency assessment. (ii) Students are willing to take greater responsibility in their assessment process. (iii) Work-based competency assessment prepares students for employment. (iv) The relationship between students and their assessors can impact on the student experience and their assessment performance. Conclusions Understanding this unique perspective of students can improve evaluation of future health professionals and assist in designing valid competency-based assessment approaches.
Resumo:
This paper proposes a physically motivated reappraisal of manoeuvring models for ships and presents a new model developed from first principles by application of low aspect-ratio aerodynamic theory and Lagrangian mechanics. The coefficients of the model are shown to be related to physical processes, and validation is presented using the results from a planar motion mechanism dataset.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.
Resumo:
This article provides an overview of the Education Meets Play study that will investigate early childhood educators’ use of play-based learning, now mandatory under the National Quality Standard. By building on what can be gleaned about educators’ approaches to play-based learning prior to the implementation of the Early Years Learning Framework, the study will contribute to the evidence base concerning the implementation and effects of Australia’s early childhood education and care policy reform initiatives.