917 resultados para minimum contrast estimator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Susceptibility Weighted Image (SWI) is a Magnetic Resonance Imaging (MRI) technique that combines high spatial resolution and sensitivity to provide magnetic susceptibility differences between tissues. It is extremely sensitive to venous blood due to its iron content of deoxyhemoglobin. The aim of this study was to evaluate, through the SWI technique, the differences in cerebral venous vasculature according to the variation of blood pressure values. 20 subjects divided in two groups (10 hypertensive and 10 normotensive patients) underwent a MRI system with a Siemens® scanner model Avanto of 1.5T using a synergy head coil (4 channels). The obtained sequences were T1w, T2w-FLAIR, T2* and SWI. The value of Contrast-to-Noise Ratio (CNR) was assessed in MinIP (Minimum Intensity Projection) and Magnitude images, through drawing free hand ROIs in venous structures: Superior Sagittal Sinus (SSS) Internal Cerebral Vein (ICV) and Sinus Confluence (SC). The obtained values were presented in descriptive statistics-quartiles and extremes diagrams. The results were compared between groups. CNR shown higher values for normotensive group in MinIP (108.89 ± 6.907) to ICV; (238.73 ± 18.556) to SC and (239.384 ± 52.303) to SSS. These values are bigger than images from Hypertensive group about 46 a.u. in average. Comparing the results of Magnitude and MinIP images, there were obtained lower CNR values for the hypertensive group. There were differences in the CNR values between both groups, being these values more expressive in the large vessels-SSS and SC. The SWI is a potential technique to evaluate and characterize the blood pressure variation in the studied vessels adding a physiological perspective to MRI and giving a new approach to the radiological vascular studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio Link Quality Estimation (LQE) is a fundamental building block for Wireless Sensor Networks, namely for a reliable deployment, resource management and routing. Existing LQEs (e.g. PRR, ETX, Fourbit, and LQI ) are based on a single link property, thus leading to inaccurate estimation. In this paper, we propose F-LQE, that estimates link quality on the basis of four link quality properties: packet delivery, asymmetry, stability, and channel quality. Each of these properties is defined in linguistic terms, the natural language of Fuzzy Logic. The overall quality of the link is specified as a fuzzy rule whose evaluation returns the membership of the link in the fuzzy subset of good links. Values of the membership function are smoothed using EWMA filter to improve stability. An extensive experimental analysis shows that F-LQE outperforms existing estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rheological and structural characteristics of acetoxypropylcellulose (APC) nematic melt are studied at shear rates ranging from 10 s(-1) to 1000 s(-1) which are relevant to extrusion based processes. APC shows a monotonic shear thinning behavior over the range of shear rates tested. The negative extrudate-swell shows a minimum when a critical shear rate (gamma) over dot(c) is reached. For shear rates smaller than (gamma) over dot(c), the flow-induced texture consists of two set of bands aligned parallel and normal to the flow direction. At shear rates larger than (gamma) over dot(c), the flow induced texture is reminiscent of a 2 fluids structure. Close to the shearing walls, domains elongated along the flow direction and stacked along the vorticity are imaged with POM, whereas SALS patterns indicate that the bulk of the sheared APC is made of elliptical domains oriented along the vorticity. No full nematic alignment is achieved at the largest shear rate tested. Below (gamma) over dot(c), the stress relaxation is described by a stretched exponential. Above (gamma) over dot(c), the stress relaxation is described by a fast and a slow process. The latter coincides with the growth of normal bands thicknesses, as the APC texture after flow cessation consists of two types of bands with parallel and normal orientations relative to the flow direction. Both bands thicknesses do not depend on the applied shear rate, in contrast to their orientation. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Work presented in the context of the European Master in Computational Logics, as partial requisit for the graduation as Master in Computational Logics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accepted in 13th IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMedia 2015), Amsterdam, Netherlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To assess the feasibility of performing pulmonary angiography using MRI with contrast enhancement in patients with pulmonary vascular disease. METHODS: We present our experience in ten individuals, two controls and eight patients who underwent the exam after injection of a gadolinium-based contrast agent on a 1 Tesla MR scanner using a time-of-flight sequence and breath-holding during injection of contrast. RESULTS: Pathology in the main pulmonary artery and its major branches was detected easily while resolution at the segmental and subsegmental levels was inadequate. CONCLUSION: Contrast-enhanced magnetic resonance pulmonary angiography is feasible on a 1 Tesla MR scanner for the study of pathology of the main pulmonary artery and its major branches, like massive pulmonary embolism. However its ability to detect and define distal vessel pathology as found in chronic thromboembolic pulmonary hypertension and small pulmonary emboli is limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Herpes simplex virus (HSV) and varicella zoster virus (VZV) are responsible for a variety of human diseases, including central nervous system diseases. The use of polymerase chain reaction (PCR) techniques on cerebrospinal fluid samples has allowed the detection of viral DNA with high sensitivity and specificity. Methods Serial dilutions of quantified commercial controls of each virus were subjected to an in-house nested-PCR technique. Results The minimum detection limits for HSV and VZV were 5 and 10 copies/µL, respectively. Conclusions The detection limit of nested-PCR for HSV and VZV in this study was similar to the limits found in previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Dengue is the most prevalent arboviral disease in tropical areas. In Mato Grosso, outbreaks are reported every year, but studies on dengue in this state are scarce. METHODS: Natural transovarial infection of Aedes aegypti by a flavivirus was investigated in the Jardim Industriário neighborhood of Cuiabá, Mato Grosso. Eggs were collected with ovitraps during the dry, intermediate, and rainy seasons of 2012. After the eggs hatched and the larvae developed to adulthood, mosquitoes (n = 758) were identified and allocated to pools of 1-10 specimens according to the collection location, sex, and climatic period. After RNA extraction, multiplex semi-nested RT-PCR was performed to detect the four dengue virus (DENV) serotypes, yellow fever virus, West Nile virus and Saint Louis encephalitis virus. RESULTS: DENV-4 was the only flavivirus detected, and it was found in 8/50 pools (16.0%). Three of the positive pools contained females, and five contained males. Their nucleotide sequences presented 96-100% similarity with DENV-4 genotype II strains from Manaus, Amazonas. The minimum infection rate was 10.5 per 1000 specimens, and the maximum likelihood estimator of the infection rate was 11.6 (95% confidence interval: 4.8; 23.3). CONCLUSIONS: This study provides the first evidence of natural transovarial infection by DENV-4 in Ae. Aegypti in Mato Grosso, suggesting that this type of infection might serve as a mechanism of virus maintenance during interepidemic periods in Cuiabá, a city where dengue epidemics are reported every year. These results emphasize the need for efficient vector population control measures to prevent arbovirus outbreaks in the state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractINTRODUCTION: This study evaluated whether different strains of Brevibacillus laterosporus could be used to control larvae of the blowfly Chrysomya megacephala , a pest that affects both human and animal health.METHODS:Mortality rates were recorded after 1-mL suspensions of sporulated cells of 14 different strains of B. laterosporus were added to 2.5g of premixed diet consisting of rotting ground beef fed to first instar larvae of C. megacephala . All bioassays were performed using 10 larvae per strain, with a minimum of three replicates for each bioassay. Larval mortality was recorded daily up to seven days.RESULTS:Strains Bon 707, IGM 16-92, and Shi 3 showed the highest toxicity toward the larvae producing 70.5%, 64.5%, and 51.6% of larval mortality, respectively, which was significantly higher than that in the control group (p < 0.05). In contrast, strains NRS 1642, NRS 661, NRS 590 BL 856, NRS 342, ATCC 6457, Bon 712, and NRS 1247 showed limited or no pathogenic activity against the target larvae.CONCLUSIONS:Our preliminary data indicated that B. laterosporus could be used to develop bioinsecticides against C. megacephala .