942 resultados para microgravity gas-liquid two-phase flow
Resumo:
A two-phase anaerobic biodigestor was employed in order to analyze methane production with different manipueira organic loading rates. The acidogenic phase was carried out in a batch process whereas the methanogenic in an up-flow anaerobic fixed bed reactor with continuous feeding. The organic loading rates varied from 0.33 up to 8.48g of Chemical Demand Oxygen (COD)/L.day. The highest content of methane, 80.9%, was obtained with organic loading rate of 0.33g and the lowest, 56.8%, with 8.48gCOD/L.d. The highest reduction of COD, 88.89%, was obtained with organic loading rate of 2.25g and the lowest, 54.95%, with 8.48gCOD/L.d. From these data it was possible to realize that anaerobic biodigestion can be managed in at least two ways, i.e., for energy production (methane) or for organic loading reduction. The organic loading rate should be calculated as part of the purpose of the treatment to be accomplished.
Resumo:
It is shown that, for a sufficiently large value of β, two-dimensional flow on a doubly-periodic beta-plane cannot be ergodic (phase-space filling) on the phase-space surface of constant energy and enstrophy. A corresponding result holds for flow on the surface of a rotating sphere, for a sufficiently rapid rotation rate Ω. This implies that the higher-order, non-quadratic invariants are exerting a significant influence on the statistical evolution of the flow. The proof relies on the existence of a finite-amplitude Liapunov stability theorem for zonally symmetric basic states with a non-vanishing absolute-vorticity gradient. When the domain size is much larger than the size of a typical eddy, then a sufficient condition for non-ergodicity is that the wave steepness ε < 1, where ε = 2[surd radical]2Z/βU in the planar case and $\epsilon = 2^{\frac{1}{4}} a^{\frac{5}{2}}Z^{\frac{7}{4}}/\Omega U^{\frac{5}{2}}$ in the spherical case, and where Z is the enstrophy, U the r.m.s. velocity, and a the radius of the sphere. This result may help to explain why numerical simulations of unforced beta-plane turbulence (in which ε decreases in time) seem to evolve into a non-ergodic regime at large scales.
Resumo:
We present a variable time step, fully adaptive in space, hybrid method for the accurate simulation of incompressible two-phase flows in the presence of surface tension in two dimensions. The method is based on the hybrid level set/front-tracking approach proposed in [H. D. Ceniceros and A. M. Roma, J. Comput. Phys., 205, 391400, 2005]. Geometric, interfacial quantities are computed from front-tracking via the immersed-boundary setting while the signed distance (level set) function, which is evaluated fast and to machine precision, is used as a fluid indicator. The surface tension force is obtained by employing the mixed Eulerian/Lagrangian representation introduced in [S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, J. Comput. Phys., 203, 493-516, 2005] whose success for greatly reducing parasitic currents has been demonstrated. The use of our accurate fluid indicator together with effective Lagrangian marker control enhance this parasitic current reduction by several orders of magnitude. To resolve accurately and efficiently sharp gradients and salient flow features we employ dynamic, adaptive mesh refinements. This spatial adaption is used in concert with a dynamic control of the distribution of the Lagrangian nodes along the fluid interface and a variable time step, linearly implicit time integration scheme. We present numerical examples designed to test the capabilities and performance of the proposed approach as well as three applications: the long-time evolution of a fluid interface undergoing Rayleigh-Taylor instability, an example of bubble ascending dynamics, and a drop impacting on a free interface whose dynamics we compare with both existing numerical and experimental data.
Resumo:
We consider Discontinuous Galerkin approximations of two-phase, immiscible porous media flows in the global pressure/fractional flow formulation with capillary pressure. A sequential approach is used with a backward Euler step for the saturation equation, equal-order interpolation for the pressure and the saturation, and without any limiters. An accurate total velocity field is recovered from the global pressure equation to be used in the saturation equation. Numerical experiments show the advantages of the proposed reconstruction. To cite this article: A. Ern et al., C R. Acad. Sci. Paris, Ser. 1347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
A procedure for calculation of refrigerant mass flow rate is implemented in the distributed numerical model to simulate the flow in finned-tube coil dry-expansion evaporators, usually found in refrigeration and air-conditioning systems. Two-phase refrigerant flow inside the tubes is assumed to be one-dimensional, unsteady, and homogeneous. In themodel the effects of refrigerant pressure drop and the moisture condensation from the air flowing over the external surface of the tubes are considered. The results obtained are the distributions of refrigerant velocity, temperature and void fraction, tube-wall temperature, air temperature, and absolute humidity. The finite volume method is used to discretize the governing equations. Additionally, given the operation conditions and the geometric parameters, the model allows the calculation of the refrigerant mass flow rate. The value of mass flow rate is computed using the process of parameter estimation with the minimization method of Levenberg-Marquardt minimization. In order to validate the developed model, the obtained results using HFC-134a as a refrigerant are compared with available data from the literature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The partition of hemoglobin, lysozyme and glucose-6-phospate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na2SO4, pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).
Resumo:
Um biodigestor anaeróbio de duas fases foi utilizado para se analisar a produção de metano com diferentes cargas de entrada de manipueira. A fase acidogênica foi realizada em processo de batelada e a metanogênica em biodigestor anaeróbio de fluxo ascendente e leito fixo com alimentação contínua. As cargas orgânicas de entrada variaram de 0,33 a 8,48 gDQO (Demanda Química de Oxigênio)/L.dia. A maior porcentagem de metano encontrada foi de 80,9%, com carga orgânica de 0,33g e a menor, 56,8%, obtida com 8,49gDQO/L.d. A maior taxa de redução de DQO foi de 88,89%, obtida com carga orgânica de 2,25g e a menor, 54,95%, com 8,48gDQO/L.d. Analisando-se os dados apresentados verificou-se que a biodigestão anaeróbia pode ser conduzida, pelo menos, de duas maneiras, ou seja, para produção de energia (metano) ou para redução de carga orgânica. A carga orgânica de entrada deve ser calculada em função do objetivo a ser alcançado com a biodigestão anaeróbia.
Resumo:
A pressed pellet of CIO (-)(4) poly (3-methylthiophene) (P3MT) was heated for two hours at 85 degrees C and suddenly dropped in liquid nitrogen. A change was observed around 220 K in the Electron Spin Resonance (ESR) spectra when the sample was slowly cooled from room temperature. ESR line asymmetry parameter (A/B) showed two spatially separated phases. One was identified as a small metallic-like phase. The other phase, the larger one, makes a transition to a semiconducting Charge-Density Wave (CDW) state.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Centrifugal countercurrent distribution (CCCD) in an aqueous two-phase system (TPS) is a resolute technique revealing sperm heterogeneity and for the estimation of the fertilizing potential of a given semen sample. However, separated sperm subpopulations have never been tested for their fertilizing ability yet. Here, we have compared sperm quality parameters and the fertilizing ability of sperm subpopulations separated by the CCCD process from ram semen samples maintained at 20 degrees C or cooled down to 5 degrees C. Total and progressive sperm motility was evaluated by computer-assisted analysis using a CASA system and membrane integrity was evaluated by flow cytometry by staining with CFDA/Pl. The capacitation state, staining with chlortetracycline, and apoptosis-related markers, such as phosphatidylserine (PS) translocation detected with Annexin V. and DNA damage detected by the TUNEL assay, were determined by fluorescence microscopy. Additionally, the fertilizing ability of the fractionated subpopulations was comparative assessed by zona binding assay (ZBA). CCCD analysis revealed that the number of spermatozoa displaying membrane and DNA alterations was higher in samples chilled at 5 degrees C than at 20 degrees C. which can be reflected in the displacement to the left of the CCCD profiles. The spermatozoa located in the central and right chambers (more hydrophobic) presented higher values (P<0.01) of membrane integrity, lower PS translocation (P<0.05) and DNA damage (P<0.001) than those in the left part of the profile, where apoptotic markers were significantly increased and the proportion of viable non-capacitated sperm was reduced. We have developed a new protocol to recover spermatozoa from the CCCD fractions and we proved that these differences were related with the fertilizing ability determined by ZBA, because we found that the number of spermatozoa attached per oocyte was significantly higher for spermatozoa recovered from the central and right chambers, in both types of samples. This is the first time, to our knowledge that sperm recovered from a two-phase partition procedure are used for fertilization assays. These results open up new possibilities for using specific subpopulations of sperm for artificial insemination or in vitro fertilization, not only regarding better sperm quality but also certain characteristics such as subpopulations enriched in spermatozoa bearing X or Y chromosome that we have already isolated or any other feature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Purification of collagenase produced by Penicillium aurantiogriseum URM4622 was carried using a PEG/phosphate aqueous two-phase system (ATPS). A 2(3)-full experimental design was used to investigate the influence of PEG molar mass, PEG concentration and phosphate concentration on the selected responses, namely partition coefficient, activity yield and purification factor. The ATPS was composed of PEG (molar mass of 550, 1500 and 4000 g/mol) at concentrations of 15.0, 17.5 and 20.0% (w/w) and phosphate at concentrations of 12.5, 15.0 and 17.5% (w/w). The best results of one-step extraction of collagenase from the fermentation broth (partition coefficient of 1.01, activity yield of 242% and purification factor of 23.5) were obtained at pH 6.0 using 20.0% (w/w) PEG 550 and 17.5% (w/w) phosphate. The results of this preliminary study demonstrate that the selected ATPS is satisfactorily selective for the extraction of such a collagenase. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ein eindimensionales numerisches Modell der maritimenGrenzschicht (MBL) wurde erweitert, um chemische Reaktionenin der Gasphase, von Aerosolpartikeln und Wolkentropfen zu beschreiben. Ein Schwerpunkt war dabei die Betrachtung derReaktionszyklen von Halogenen. Soweit Ergebnisse vonMesskampagnen zur Verfuegung standen, wurden diese zurValidierung des Modells benutzt. Die Ergebnisse von frueheren Boxmodellstudien konntenbestaetigt werden. Diese zeigten die saeurekatalysierteAktivierung von Brom aus Seesalzaerosolen, die Bedeutung vonHalogenradikalen fuer die Zerstoerung von O3, diepotentielle Rolle von BrO bei der Oxidation von DMS und dievon HOBr und HOCl in der Oxidation von S(IV). Es wurde gezeigt, dass die Beruecksichtigung derVertikalprofile von meteorologischen und chemischen Groessenvon grosser Bedeutung ist. Dies spiegelt sich darin wider,dass Maxima des Saeuregehaltes von Seesalzaerosolen und vonreaktiven Halogenen am Oberrand der MBL gefunden wurden.Darueber hinaus wurde die Bedeutung von Sulfataerosolen beidem aktiven Recyceln von weniger aktiven zu photolysierbarenBromspezies gezeigt. Wolken haben grosse Auswirkungen auf die Evolution und denTagesgang der Halogene. Dies ist nicht auf Wolkenschichtenbeschraenkt. Der Tagesgang der meisten Halogene ist aufgrundeiner erhoehten Aufnahme der chemischen Substanzen in die Fluessigphase veraendert. Diese Ergebnisse betonen dieWichtigkeit der genauen Dokumentation der meteorologischenBedingungen bei Messkampagnen (besonders Wolkenbedeckungsgrad und Fluessigwassergehalt), um dieErgebnisse richtig interpretieren und mit Modellresultatenvergleichen zu koennen. Dieses eindimensionale Modell wurde zusammen mit einemBoxmodell der MBL verwendet, um die Auswirkungen vonSchiffemissionen auf die MBL abzuschaetzen, wobei dieVerduennung der Abgasfahne parameterisiert wurde. DieAuswirkungen der Emissionen sind am staerksten, wenn sie insauberen Gebieten stattfinden, die Hoehe der MBL gering istund das Einmischen von Hintergrundluft schwach ist.Chemische Reaktionen auf Hintergrundaerosolen spielen nureine geringe Rolle. In Ozeangebieten mit schwachemSchiffsverkehr sind die Auswirkungen auf die Chemie der MBL beschraenkt. In staerker befahrenen Gebieten ueberlappensich die Abgasfahnen mehrerer Schiffe und sorgen fuerdeutliche Auswirkungen. Diese Abschaetzung wurde mitSimulationen verglichen, bei denen die Emissionen alskontinuierliche Quellen behandelt wurden, wie das inglobalen Chemiemodellen der Fall ist. Wenn die Entwicklungder Abgasfahne beruecksichtigt wird, sind die Auswirkungendeutlich geringer da die Lebenszeit der Abgase in der erstenPhase nach Emission deutlich reduziert ist.