948 resultados para microbial conversion
Resumo:
Purpose: To determine the influence of rate of polymerization, degree of conversion and volumetric shrinkage on stress development by varying the amount of photoinitiators in a model composite. Methods: Volumetric shrinkage (with a mercury dilatometer), degree of conversion, maximum rate of reaction (RP(max)) (with differential scanning calorimetry) and polymerization stress (with a controlled compliance device) were evaluated. Bis-GMA/TEGDMA (equal mass ratios) were mixed with a tertiary amine (EDMAB) and camphorqpinone, respectively, in three concentrations (wt%): high= 0.8/1.6; intermediate= 0.4/0.8 and low= 0.2/0.4. 80 wt% filler was added. Composites were photoactivated (400 mW/cm(2) x 40 seconds; radiant exposure=16J/cm(2)). A fourth experimental group was included in which the low concentration formulation was exposed for 80 seconds (32 J/cm(2)). Results: For the same radiant exposure, conversion, RP(max) and stress increased with photoinitiator concentration (P< 0.001). When the low concentration group exposed to 32 J/cm(2) was compared with the high and intermediate groups (exposed to 16 J/cm(2)), RPmax Still increased with the photoinitiator concentration between all levels (P< 0.001) but conversion and stress did not vary (P> 0.05). Shrinkage did not vary regardless of the photoinitiator concentration or radiant exposure. For the photoinitiator concentrations used in this study. Polymerization stress was influenced by conversion but not by rate of reaction. (Am J Dent 2009;22:206-210).
Resumo:
Different monomer structures lead to different physical and mechanical properties for both the monomers and the polymers. The objective of this study was to determine the influence of the bisphenylglycidyl dimethacrylate (BisGMA) concentration (33, 50 or 66 mol%) and the co-monomer content [triethylene glycol dimethacrylate (TEGDMA), ethoxylated bisphenol-A dimethacrylate (BisEMA), or both in equal parts] on viscosity (eta), degree of conversion (DC), and flexural strength (FS). eta was measured using a viscometer, DC was obtained by Fourier transfer Raman (FT-Raman) spectroscopy, and FS was determined by three-point bending. At 50 and 66% BisGMA, increases in eta were observed following the partial and total substitution of TEGDMA by BisEMA. For 33% BisGMA, eta increased significantly only when no TEGDMA was present. The DC was influenced by BisGMA content and co-monomer type. Mixtures containing 66% BisGMA showed a lower DC compared with mixtures containing other concentrations of BisGMA. The BisEMA mixtures had a lower DC compared with the TEGDMA mixtures. The FS was influenced by co-monomer content only. BisEMA mixtures presented a statistically lower FS, followed by TEGDMA + BisEMA mixtures, and then by TEGDMA mixtures. Partial or total replacement of TEGDMA by BisEMA increased eta, which was associated with the observed decreases in DC and FS. Although the BisGMA content influenced the DC, it did not affect the FS results.
Resumo:
Purpose: To evaluate the effect of light guide distance and the different photoactivation methods on the degree of conversion (DC) and microleakage of a composite. Methods and Materials: Three photoactivation protocols (600mW/cm(2) x 40 seconds; 400 mW/cm(2) x 60 seconds or 200 mW/cm(2) x 20 seconds, followed by 500 mW/cm(2) X 40 seconds) and three distances from the light source (0, 3 or 7 mm) were tested. Cylindrical specimens (5 nun diameter; 2 mm tall; n=3) were prepared for the DC test (FT-Raman). Class V cavities were made in 90 bovine incisors to conduct the microleakage test. The specimens were conditioned for 15 seconds with phosphoric acid (37%), followed by application of the adhesive system Prime & Bond NT (Dentsply/Caulk). The preparations were restored in bulk. The specimens were stored for 24 hours in distilled water (37 degrees C) before being submitted to the silvernitrate microleakage protocol. The restorations were sectioned and analyzed under 25x magnification. Results: Statistical analyses (two-way ANOVAs and Tukey test, alpha=0.05) found significance only for the factor distance (p=0.015) at the top of the composite for the DC test. Conversion was statistically lower for the 7 mm groups compared to the 0 and 3 mm groups, which were equivalent to each other. At the bottom of the specimens, none of the factors or interactions was significant (p<0.05). The Kruskal-Wallis test showed that, in general, the soft-start method led to lower microleakage scores when compared to the continuous modes, mainly when associated with a distancing of 7 mm (p<0.01). With the exception of specimens irradiated with 400mW/cm(2) that did not demonstrate variations on scores for the distances tested, higher microleakage was observed for shorter distances from the light source. Conclusions: Soft-start methods may reduce microleakage when the light guide distancing provides a low level of irradiance, which also causes a discrete reduction in the DC.
Resumo:
Objective. This study evaluated the degree of conversion (DC), maximum rate of cure (R(p)(max)), and polymerization stress (PS) developed by an experimental dental composite subjected to different irradiant energies (3,6,12, 24, or 48J/cm(2)) under constant irradiance (500 mw/cm(2)). Methods. DC and R(p)(max) were monitored for 10 min on the bottom surface of 2-mm thick disks and on 150-mu m thick films (representing the top of the specimen) using ATR-FTIR. PS was monitored for 10 min in 2-mm thick disks bonded to two glass rods (O = 5 mm) attached to a universal testing machine. One-way ANOVA/Tukey tests were used and differences in DC and R(p)(max) between top and bottom surfaces were examined using Student`s t-test. Statistical testing was performed at a pre-set alpha of 0.05. Results. For a given surface, DC showed differences among all groups, except at the top between 24 and 48 J/cm(2). R(p)(max) was similar among all groups at the same surface and statistically higher at the top surface. PS also showed significant differences among all groups. Data for 48 J/cm(2) were not obtained due to specimen failure at the glass/composite interface. Significance. Increases in irradiant exposure led to significant increases in DC and PS, but had no effect on R(p)(max) (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: Verify the influence of radiant exposure (H) on composite degree of conversion (DC) and mechanical properties. Methods: Composite was photoactivated with 3, 6, 12, 24, or 48 J/cm(2). Properties were measured after 48-h dry storage at room temperature. DC was determined on the flat surfaces of 6 mm x 2 mm disk-shaped specimens using FTIR. Flexural strength (FS) and modulus (FM) were accessed by three-point bending. Knoop microhardness number (KHN) was measured on fragments of FS specimens. Data were analyzed by one-way ANOVA/Tukey test, Student`s t-test, and regression analysis. Results: DC/top between 6 and 12 J/cm(2) and between 24 and 48 J/cm(2) were not statistically different. No differences between DC/top and bottom were detected. DC/bottom, FM, and KHN/top showed significant differences among all H levels. FS did not vary between 12 and 24 J/cm(2) and between 24 and 48 J/cm(2). KHN/bottom at 3 and 6 J/cm(2) was similar. KHN between top and bottom was different up to 12 J/cm(2). Regression analyses having H as independent variable showed a plateau region above 24 J/cm(2). KHN increased exponentially (top) or linearly (bottom) with DC. FS and FM increased almost linearly with DC/bottom up to 55% conversion. Conclusions: DC and mechanical properties increased with radiant exposure. Variables leveled off at high H levels. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Purpose: To evaluate early and 24-hour microtensile bond strength (mu TBS) and the degree of conversion (DC) of one representative adhesive system from each of the four current bonding approaches. Methods: 40 human molars were sectioned occluso-gingivally into two halves. Resin composite was bonded incrementally to flat, mid-coronal dentin, using the adhesives Adper Scotchbond MP (MP); Adper Scotchbond 2 (SB); Clearfil SE Bond (SE); and Adper Prompt L-Pop (LP) according to the respective manufacturer`s instructions (n= 10). One half was immediately sectioned into sticks and subjected to mu TBS test. As the sectioning process took approximately 1 hour, the results were designated as 1-hour bond strengths. The other half was stored in distilled water at 37 degrees C for 24 hours before being sectioned and tested. The DC of these systems was measured using Fourier Transform-Raman spectroscopy in three periods: immediately, 1 and 24 hours after polymerization. Data were analyzed with ANOVA and Tukey`s tests. Results: There were no significant differences between the 1-hour and 24-hour bond strengths (P> 0.05), or among the DC measured immediately, 1 hour and 24 hours after polymerization (P> 0.05). However, significant differences were observed among adhesives (P< 0.05). mu TBS values obtained, in MPa (1 hour/24 hour), were: SB (48.6 + 1.3/48.4 + 3.5) = SE (51.9 + 4.7/53.3 +/- 2.9) > MP (35.3 +/- 10.9/38.6 + 6.7) > LP (25.5 + 1.1/26.0 + 1.5). The DC, in percentage (immediately/1 hour/24 hour), were: SE (81/82/87) > MP (79/77/81) > SB (60/63/65) > LP (39/37/42).
Resumo:
Purpose: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. Methods: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared spectroscopy (FTIR). Wear was assessed by a three-body test. Data were submitted to Levene`s test, one and three-way ANOVA, and Tukey HSD test (alpha= 0.05). Results: Immersion in ethanol, curing mode, and material all had significant effects on Wallace hardness. After ethanol storage, resin composites exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (P< 0.0001). Tetric Ceram was the softest material followed by Esthet-X and Filtek Z250 (P< 0.001). Only the restorative material had a significant effect on degree of conversion (P< 0.001): Esthet-X had the lowest degree of conversion followed by Filtek Z250 and Tetric Ceram. Curing mode (P= 0.007) and material (P< 0.001) had significant effect on wear. Higher wear resulted from the pulse-delay curing mode when compared to continuous curing, and Filtek Z250 showed the lowest wear followed by Esthet-X and Tetric Ceram. (Am J Dent 2011;24:115-118).
Resumo:
Marine sponges often harbour communities of symbiotic microorganisms that fulfil necessary functions for the well-being of their hosts. Microbial communities associated with the sponge Rhopaloeides odorabile were used as bioindicators far sublethal cupric ion (Cu2+) stress. A combined strategy incorporating molecular, cultivation and electron microscopy techniques was adopted to monitor changes in microbial diversity. The total density of sponge-associated bacteria and counts of the predominant cultivated symbiont (alpha -proteobacterium strain NW001) were significantly reduced in response to Cu2+ concentrations of 1.7 mug l(-1) and above after 14 days of exposure. The number of operational taxonomic units (OTUs) detected by restriction fragment length polymorphism (RFLP) decreased by 64% in sponges exposed to 223 mug l(-1) Cu2+ for 48 h and by 46% in sponges exposed to 19.4 mug l(-1) Cu2+ for 14 days. Electron microscopy was used to identify 17 predominant bacterial morphotypes, composing 47% of the total observed cells in control sponges. A reduction In the proportion of these morphotypes to 25% of observed cells was evident in sponges exposed to a Cu2+ concentration of 19.4 mug l(-1). Although the abundance of most morphotypes decreased under Cu2+ stress, three morphotypes were not reduced in numbers and a single morphotype actually increased in abundance. Bacterial numbers, as detected using fluorescence in situ hybridization (FISH), decreased significantly after 48 h exposure to 19.4 mug l(-1) Cu2+. Archaea, which are normally prolific in R. odorabile, were not detected after exposure to a Cu2+ concentration of 19.4 mug l(-1) for 14 days, indicating that many of the microorganisms associated with R. odorabile are sensitive to free copper. Sponges exposed to a Cu2+ concentration of 223 mug l(-1) became highly necrosed after 48 h and accumulated 142 +/- 18 mg kg(-1) copper, whereas sponges exposed to 19.4 mug l(-1) Cu2+ accumulated 306 +/- 15 mg kg(-1) copper after 14 days without apoptosis or mortality. Not only do sponges have potential for monitoring elevated concentrations of heavy metals but also examining changes in their microbial symbionts is a novel and sensitive bioindicator for the assessment of pollution on important microbial communities.
Resumo:
Objectives. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other. Methods. Different light-curing protocols were used in order to investigate the influence of energy density (ED), power density (PD), and mode of cure on the properties. The modes of cure were continuous, pulse-delay, and stepped irradiation. DC was measured by Raman micro-spectroscopy. C was determined by pycnometry and a density column. E was measured by a dynamic mechanical analyzer (DMA), and T(g) was measured by differential scanning calorimetry (DSC). Data were submitted to two-and three-way ANOVA, and linear regression analyses. Results. ED, PD, and mode of cure influenced DC, C, E, and T(g) of the polymer. A significant positive correlation was found between ED and DC (r = 0.58), ED and E (r = 0.51), and ED and T(g) (r = 0.44). Taken together, ED and PD were significantly related to DC and E. The regression coefficient was positive for ED and negative for PD. Significant positive correlations were detected between DC and C (r = 0.54), DC and E (r = 0.61), and DC and T(g) (r = 0.53). Comparisons between continuous and pulse-delay modes of cure showed significant influence of mode of cure: pulse-delay curing resulted in decreased DC, decreased C, and decreased T(g). Influence of mode of cure, when comparing continuous and step modes of cure, was more ambiguous. A complex relationship exists between curing protocol, microstructure of the resin and the investigated properties. The overall performance of a composite is thus indirectly affected by the curing protocol adopted, and the desired reduction of C may be in fact a consequence of the decrease in DC. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The free radical polymerization of styrene in bulk was monitored by ESR and FT near-infrared spectroscopy at 70°C for a series of concentrations of the initiator, dimethyl 2,2′-azobis(isobutyrate). In order to obtain detailed kinetic information over the intire conversion range, and the gel effect range in particular, conversion and free radical concentration data points were accumulated with exceptionally short time intervals. The polystyrene radical concentration ([St•]) went through a sharp maximum at the gel effect, a feature that has hitherto escaped observation due to the rapid concentration changes in the gel effect range relative to the data point time intervals of previous studies. Temperature measurements throughout the polymerization were employed to calculate that a temperature increase was not the cause of the [St•] maximum, which thus appeares to be a genuine feature of the gel effect of this system under isothermal conditions. The propagation rate constant (kp) as a function of monomer conversion exhibited a marked dependence on initiator concentration at high monomer conversion; the sharp decrease in kp with increasing conversion was shifted to higher conversions with increasing initiator concentration.
Resumo:
The reactions of sodium benzoate with a series of trimesylates derived from glucosamine have been examined in an attempt to gain facile access to galactosamine analogues. Trimesylate 17, in which the amino group was protected as a phthalimide, underwent double displacement at positions 4 and 6 to give the dibenzoate 18 with the desired galactosamine configuration. In contrast, trimesylates 21 and 27, in which the amino groups were protected as acetamides, unexpectedly underwent double displacement at positions 3 and 6, giving products 22 and 28, respectively, with allosamine configurations.
Resumo:
Trace element concentrations and combined Sr- and Nd-isotope compositions were determined on stromatolitic carbonates (microbialites) from the 2.52 Ga Campbellrand carbonate platform (South Africa). Shale-normalised rare earth element and yttrium patterns of the ancient samples are similar to those of modern seawater in having positive La and Y anomalies and in being depleted in light rare earth elements. In contrast to modem seawater (and microbialite proxies), the 2.52 Ga samples lack a negative Ce anomaly but possess a positive Eu anomaly. These latter trace element characteristics are interpreted to reflect anoxic deep ocean waters where, unlike today, hydrothermal Fe input was not oxidised, and scavenged and rare earth elements were not coprecipitated with Fe-oxyhydroxides. The persistence of a positive Eu anomaly in relatively shallow Campbellrand platform waters indicates a dramatic reversal from hydrothermally dominated (Archaean) to continental erosion-dominated (Phanerozoic) rare earth element flux ratio. The dominant hydrothermal input is also expressed in the initial Sr- and Nd-isotope ratios. There is collinear variation in Sr-Nd systematics, which range from primitive values (Sr-87/Sr-86 of 0.702386 and epsilon (Nd) of +2.1) to more evolved crustal ratios. Mixing calculations show that the range in trace element ratios (e.g., Y/Ho) and initial isotope ratios is not a result of contamination by trapped sediment, but that the chemical band isotopic variation reflects carbonate deposition in an environment where different water masses mixed. Calculated Nd flux ratios yield a hydrothermal input into the 2.52 Ga oceans one order of magnitude larger than continental input. Such a change in flux ratio most likely required substantially reduced continental inputs, which could, in turn, reflect a plate tectonic causation (e.g., reduced topography or expansion of epicontinental seas). Copyright (C) 2001 Elsevier Science Ltd.
Resumo:
An increasingly comprehensive assessment is being developed of the extent and potential significance of lateral gene transfer among microbial genomes. Genomic sequences can be identified as being of putatively lateral origin by their unexpected phyletic distribution, atypical sequence composition, differential presence or absence in closely related genomes, or incongruent phylogenetic trees. These complementary approaches sometimes yield inconsistent results. Not only more data but also quantitative models and simulations are needed urgently.
Resumo:
Polyphenolics are widely distributed in the plant kingdom and are often present in the diet of herbivores. The two major groups of plant polyphenolic compounds other than lignin are condensed and hydrolysable tannins. These compounds can have toxic and/or antinutritional effects on the animal. It is well established that tannins complex with dietary proteins can reduce nitrogen supply to the animal, but the ability of gastrointestinal microorganisms to metabolise these compounds and their effects on microbial populations have received little attention. In this paper, we review recent literature on the topic as well as present research from our laboratories on the effect of condensed tannins on rumen microbial ecology and rumen metabolism. Interactions of tannins with dietary components and endogenous protein in the rumen and post-ruminally, and their impact on the nutrition of the animal are considered. (C) 2001 Elsevier Science B.V. All rights reserved.