641 resultados para microRNAs (miRNA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) control gene expression mostly post-transcriptionally by guiding transcript cleavage and/or translational repression of complementary mRNA targets, thereby regulating developmental processes and stress responses. Despite the remarkable expansion of the field, the mechanisms underlying miRNA activity are not fully understood. In this article, we describe a transient expression system in Arabidopsis mesophyll protoplasts, which is highly amenable for the dissection of miRNA pathways. We show that by transiently overexpressing primary miRNAs and target mimics, we can manipulate miRNA levels and consequently impact on their targets. Furthermore, we developed a set of luciferase-based sensors for quantifying miRNA activity that respond specifically to both endogenous and overexpressed miRNAs and target mimics. We demonstrate that these miRNA sensors can be used to test the impact of putative components of the miRNA pathway on miRNA activity, as well as the impact of specific mutations, by either overexpression or the use of protoplasts from the corresponding mutants. We further show that our miRNA sensors can be used for investigating the effect of chemicals on miRNA activity. Our cell-based transient expression system is fast and easy to set up, and generates quantitative results, being a powerful tool for assaying miRNA activity in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International audience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regular exercise stimulates numerous structural, metabolic, and morphological adaptations in skeletal muscle. These adaptations are vital to maintain human health over the life span. Exercise is therefore seen as a primary intervention to reduce the risk of chronic disease. Advances in molecular biology, biochemistry, and bioinformatics, combined with exercise physiology, have identified many key signaling pathways as well as transcriptional and translational processes responsible for exercise-induced adaptations. Noncoding RNAs, and specifically microRNAs (miRNAs), constitute a new regulatory component that may play a role in these adaptations. The short single-stranded miRNA sequences bind to the 3' untranslated region of specific messenger RNAs (mRNAs) on the basis of sequence homology. This results in the degradation of the target mRNA or the inhibition of protein translation causing repression of the corresponding protein. While tissue specificity or enrichment of certain miRNAs makes them ideal targets to manipulate and understand tissue development, function, health, and disease, other miRNAs are ubiquitously expressed; however, it is uncertain whether their mRNA/protein targets are conserved across different tissues. miRNAs are stable in plasma and serum and their altered circulating expression levels in disease conditions may provide important biomarker information. The emerging research into the role that miRNAs play in exercise-induced adaptations has predominantly focused on the miRNA species that are regulated in skeletal muscle or in circulation. This chapter provides an overview of these current research findings, highlights the strengths and weaknesses identified to date, and suggests where the exercise-miRNA field may move into the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurodegenerative diseases are becoming an ever-increasing problem in aging populations. Low levels of brain-derived neurotrophic factor (BDNF) have previously been associated with the pathogenesis of numerous neurodegenerative diseases. Recently, microRNAs (miRNAs) have been proposed as potential novel therapeutic targets for treating various diseases of the central nervous system (CNS), and interestingly, few studies have reported several miRNAs that downregulate the expression levels of BDNF. However, substantial challenges exist when attempting to translate these findings into practical anti-miRNA therapeutics, especially when the targets remain inside the CNS. Thus, in this review, we summarize the specific molecular mechanisms by which several miRNAs negatively modulate the expressions of BDNF, address the potential clinical difficulties that can be faced during the development of anti-miRNA-based therapeutics and propose strategies to overcome these challenges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute respiratory distress syndrome (ARDS) is a complex disease associated with high morbidity and mortality. Biomarkers and specific pharmacologic treatment of the syndrome are lacking. MicroRNAs (miRNAs) are small (∼19–22 nucleotides) noncoding RNA molecules whose function is the regulation of gene expression. Their uncommon biochemical characteristics (eg, their resistance to degradation because of extreme temperature and pH fluctuations, freeze-thaw cycles, long storage times in frozen conditions, and RNAse digestion) and their presence in a wide range of different biological fluids and the relatively low number of individual miRNAs make these molecules good biomarkers in different clinical conditions. In addition, miRNAs are suitable therapeutic targets as their expression can be modulated by different available strategies. The aim of the present review is to offer clinicians a global perspective of miRNA, covering their structure and nomenclature, biogenesis, effects on gene expression, regulation of expression, and features as disease biomarkers and therapeutic targets, with special attention to ARDS. Because of the early stage of research on miRNAs applied to ARDS, attention has been focused on how knowledge sourced from basic and translational research could inspire future clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify microRNAs potentially involved in melanomagenesis, we compared microRNA expression profiles between melanoma cell lines and cultured melanocytes. The most differentially expressed microRNA between the normal and tumor cell lines was miR-211. We focused on this pigment-cell-enriched miRNA as it is derived from the microphthalmia-associated transcription factor (MITF)-regulated gene, TRPM1 (melastatin). We find that miR-211 expression is greatly decreased in melanoma cells and melanoblasts compared to melanocytes. Bioinformatic analysis identified a large number of potential targets of miR-211, including POU3F2 (BRN2). Inhibition of miR-211 in normal melanocytes resulted in increased BRN2 protein, indicating that endogenous miR-211 represses BRN2 in differentiated cells. Over-expression of miR-211 in melanoma cell lines changed the invasive potential of the cells in vitro through directly targeting BRN2 translation. We propose a model for the apparent non-overlapping expression levels of BRN2 and MITF in melanoma, mediated by miR-211 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim: Since microRNAs (miRNAs) act as translational regulators of multiple genes, single nucleotide polymorphisms (SNP) in them can have potentially wide-ranging effects. Using an association approach, this research examined the effects of the rs6505162 SNP, an A>C polymorphism located in the premiRNA region of miR-423, on breast cancer development. Materials and Methods: Caucasian Australian women with breast cancer and controls matched for age and ethnicity were genotyped for rs6505162 and their genotypic and allelic frequencies analysed for significant differences. Results: Analysis indicated that there were significant differences between the case and control populations (χ 2=6.70, p=0.035), with the CC genotype conferring reduced risk of breast cancer development (odds ratio=0.50 95% confidence interval=0.27-0.92, p=0.03). Conclusion: Further functional research is required to determine the mechanism of action of this SNP on miRNA function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The Arabidopsis thaliana (Arabidopsis) DOUBLE-STRANDED RNA BINDING (DRB) protein family consists of five members, DRB1 to DRB5. The biogenesis of two developmentally important small RNA (sRNA) species, the microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) by DICER-LIKE (DCL) endonucleases requires the assistance of DRB1 and DRB4 respectively. The importance of miRNA-directed target gene expression in plant development is exemplified by the phenotypic consequence of loss of DRB1 activity (drb1 plants). Principal Findings Here we report that the developmental phenotype of the drb235 triple mutant plant is the result of deregulated miRNA biogenesis in the shoot apical meristem (SAM) region. The expression of DRB2, DRB3 and DRB5 in wild-type seedlings is restricted to the SAM region. Small RNA sequencing of the corresponding tissue of drb235 plants revealed altered miRNA accumulation. Approximately half of the miRNAs detected remained at levels equivalent to those of wild-type plants. However, the accumulation of the remaining miRNAs was either elevated or reduced in the triple mutant. Examination of different single and multiple drb mutants revealed a clear association between the loss of DRB2 activity and altered accumulation for both the elevated and reduced miRNA classes. Furthermore, we show that the constitutive over-expression of DRB2 outside of its wild-type expression domain can compensate for the loss of DRB1 activity in drb1 plants. Conclusions/Significance Our results suggest that in the SAM region, DRB2 is both antagonistic and synergistic to the role of DRB1 in miRNA biogenesis, adding an additional layer of gene regulatory complexity in this developmentally important tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Arabidopsis thaliana (Arabidopsis), DICER-LIKE1 (DCL1) functions together with the double-stranded RNA binding protein (dsRBP), DRB1, to process microRNAs (miRNAs) from their precursor transcripts prior to their transfer to the RNA-induced silencing complex (RISC). miRNA-loaded RISC directs RNA silencing of cognate mRNAs via ARGONAUTE1 (AGO1)-catalyzed cleavage. Short interefering RNAs (siRNAs) are processed from viral-derived or transgene-encoded molecules of doublestranded RNA (dsRNA) by the DCL/dsRBP partnership, DCL4/DRB4, and are also loaded to AGO1-catalyzed RISC for cleavage of complementary mRNAs. Here, we use an artificial miRNA (amiRNA) technology, transiently expressed in Nicotiana benthamiana, to produce a series of amiRNA duplexes with differing intermolecular thermostabilities at the 5′ end of duplex strands. Analyses of amiRNA duplex strand accumulation and target transcript expression revealed that strand selection (amiRNA and amiRNA*) is directed by asymmetric thermostability of the duplex termini. The duplex strand possessing a lower 59 thermostability was preferentially retained by RISC to guide mRNA cleavage of the corresponding target transgene. In addition, analysis of endogenous miRNA duplex strand accumulation in Arabidopsis drb1 and drb2345 mutant plants revealed that DRB1 dictates strand selection, presumably by directional loading of the miRNA duplex onto RISC for passenger strand degradation. Bioinformatic and Northern blot analyses of DCL4/DRB4-dependent small RNAs (miRNAs and siRNAs) revealed that small RNAs produced by this DCL/dsRBP combination do not conform to the same terminal thermostability rules as those governing DCL1/DRB1-processed miRNAs. This suggests that small RNA processing in the DCL1/DRB1-directed miRNA and DCL4/DRB4-directed sRNA biogenesis pathways operates via different mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that in zebrafish, the microRNA miR-451 plays a crucial role in promoting erythroid maturation, in part via its target transcript gata2. Zebrafish miR-144 and miR-451 are processed from a single precursor transcript selectively expressed in erythrocytes. In contrast to other hematopoietic mutants, the ze-brafish mutant meunier (mnr) showed intact erythroid specification but diminished miR-144/451 expression. Although erythropoiesis initiated normally in mnr, erythrocyte maturation was morphologically retarded. Morpholino knockdown of miR-451 increased erythrocyte immaturity in wild-type embryos, and miR-451 RNA duplexes partially rescued erythroid maturation in mnr, demonstrating a requirement and role for miR-451 in erythro-cyte maturation. mnr provided a selectively miR-144/451-deficient background, facilitating studies to discern miRNA function and validate candidate targets. Among computer-predicted miR-451 targets potentially mediating these biologic effects, the pro-stem cell transcription factor gata2 was an attractive candidate. In vivo reporter assays validated the predicted miR-451/gata2-3'UTR interaction, gata2 down-regulation was delayed in miR-451-knockdown and mnr embryos, and gata2 knockdown partially restored erythroid maturation in mnr, collectively confirming gata2down-regulation as pivotal for miR-451-driven erythroid maturation. These studies define a new genetic pathway promoting erythroid maturation (mnr/miR-451/gata2) and provide a rare example of partial rescue of a mutant phenotype solely by miRNA overexpression. © 2009 by The American Society of Hematology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA*(passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/ amiRNA*sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana. © 2014 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.