966 resultados para mesenchymal tumors
Resumo:
Twenty-nine canine cutaneous mast cell tumors (MCTs) were morphometrically analyzed with regard to mean nuclear area (MNA) using cytopathology smears. The results showed a correlation between MNA and survival. When graded into 2 morphometrically different groups, there were statistically significant differences among high- and low-grade MCTs, regarding both Romanowsky-type stain and hematoxylin and eosin. Cytomorphometry could also separate histologic grade II tumors with better prognosis from the more aggressive MCTs. The results indicated that nuclear morphometry on cytopathology preparations can predict the biological behavior of cutaneous MCTs in dogs in an independent manner, yielding a rapid and reproducible diagnosis, which renders the method useful for veterinary oncology.
Resumo:
Background: The possibility of using stem cells for regenerative medicine has opened a new field of investigation. The search for sources to obtain multipotent stem cells from discarded tissues or through non-invasive procedures is of great interest. It has been shown that mesenchymal stem cells (MSCs) obtained from umbilical cords, dental pulp and adipose tissue, which are all biological discards, are able to differentiate into muscle, fat, bone and cartilage cell lineages. The aim of this study was to isolate, expand, characterize and assess the differentiation potential of MSCs from human fallopian tubes (hFTs). Methods: Lineages of hFTs were expanded, had their karyotype analyzed, were characterized by flow cytometry and underwent in vitro adipogenic, chondrogenic, osteogenic, and myogenic differentiation. Results: Here we show for the first time that hFTs, which are discarded after some gynecological procedures, are a rich additional source of MSCs, which we designated as human tube MSCs (htMSCs). Conclusion: Human tube MSCs can be easily isolated, expanded in vitro, present a mesenchymal profile and are able to differentiate into muscle, fat, cartilage and bone in vitro.
Resumo:
Umbilical cord mesenchymal stromal cells (MSC) have been widely investigated for cell-based therapy studies as an alternative source to bone marrow transplantation. Umbilical cord tissue is a rich source of MSCs with potential to derivate at least muscle, cartilage, fat, and bone cells in vitro. The possibility to replace the defective muscle cells using cell therapy is a promising approach for the treatment of progressive muscular dystrophies (PMDs), independently of the specific gene mutation. Therefore, preclinical studies in different models of muscular dystrophies are of utmost importance. The main objective of the present study is to evaluate if umbilical cord MSCs have the potential to reach and differentiate into muscle cells in vivo in two animal models of PMDs. In order to address this question we injected (1) human umbilical cord tissue (hUCT) MSCs into the caudal vein of SJL mice; (2) hUCT and canine umbilical cord vein (cUCV) MSCs intra-arterially in GRMD dogs. Our results here reported support the safety of the procedure and indicate that the injected cells could engraft in the host muscle in both animal models but could not differentiate into muscle cells. These observations may provide important information aiming future therapy for muscular dystrophies.
Resumo:
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.
Resumo:
Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) play a central role in neuronal differentiation. However, Ca(2+) signaling in this process remains poorly understood and it is unknown whether embryonic and adult stem cells share the same signaling pathways. To clarify this issue, neuronal differentiation was analyzed in two cell lines: embryonic P19 carcinoma stem cells (CSCs) and adult murine bone-marrow mesenchymal stem cells (MSC). We studied Ca(2+) release from the endoplasmic reticulum via intracellular ryanodine-sensitive (RyR) and IP(3)-sensitive (IP(3)R) receptors. We observed that caffeine, a RyR agonist, induced a [Ca(2+)](i) response that increased throughout neuronal differentiation. We also demonstrated a functional coupling between RyRs and L-but not with N-, P-, or Q-type Ca(v)1 Ca(2+) channels, both in embryonal CSC and adult MSC. We also found that agonists of L-type channels and of RyRs increase neurogenesis and neuronal differentiation, while antagonists of these channels have the opposite effect. Thus, our data demonstrate that in both cell lines RyRs control internal Ca(2+) release following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels. This study shows that both in embryonal CSC and adult MSC [Ca(2+)](i) is controlled by a common pathway, indicating that coupling of L-type Ca(2+) channels and RyRs may be a conserved mechanism necessary for neuronal differentiation.
Resumo:
The mRNA differential display technique was used to compare mRNAs between normal mammary gland and turner-derived epithelial cells from female Sprague-Dawley rat mammary gland tumors induced by the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by a high-fat diet (23.5% corn oil). Two genes, beta-casein and transferrin, were identified as differentially expressed. The expression of these genes was examined across a bank of rat mammary gland tumors derived from animals on a low-fat diet (5% corn oil) or the high-fat diet. Carcinomas had over a 10- and 50-fold lower expression of beta-casein and transferrin, respectively than normal mammary gland. In addition, carcinomas from animals on the high-fat diet showed on average a 5-fold higher expression of beta-casein, and transferrin than carcinomas from animals on the low-fat diet. The results indicate the process of mammary gland tumorigenesis alters the expression of certain genes in the mammary gland, and that the level of dietary fat further modulates the expression of these genes.
Resumo:
Normal Sprague-Dau ley rat mammary gland epithelial cells and mammary gland carcinomas induced by 2-amino-1 -methyl-6-phenylimidazo[4,5-b]pyridine, a carcinogen found in the diet, were examined for the expression of peroxisome proliferator-activated receptor alpha (PPAR alpha). PPAR alpha mRNA and protein was detected in normal and tumor tissue by reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. By quantitative RT-PCR, carcinomas had a 12-fold higher expression than control mammary glands, a statistically significant difference. PPAR alpha expression was examined in carcinomas and normal tissues from rats on high fat (23.5/% corn oil) and low fat (5% corn oil) diets. Although neither carcinomas, nor control tissues showed statistically significant differences between the two diet groups, PPAR alpha expression was the highest in carcinomas from rats on the high fat diet. The expression of PPAR alpha in normal mammary gland and its significant elevation in mammary gland carcinomas raises the possibility of its involvement in mammary gland physiology and pathophysiology. (C) 2000 Published by Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
In this paper we describe the efficacy of the liposomal-AlClPc (aluminum-chloro-phthalocyanine) formulation in PDT study against Ehrlich tumor cells proliferation in immunocompetent swiss mice tongue. Experiments were conduced in sixteen tumor induced mice that were divided in three control groups: (1) tumor without treatment; (2) tumor with 100 J/cm(2) laser (670 nm) irradiation; and (3) tumor with AlClPc peritumoral injection; and a PDT experimental group when tumors received AlClPc injection followed by tumor irradiation. Control groups present similar macroscopically and histological patterns after treatments, while PDT treatment induced 90% of Ehrlich tumor necrosis after 24 h of one single showing the efficacy of liposome-AlClPc (aluminum-chloro-phthalocyanine) mediated PDT application, on the treatment of oral cancer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A panel of experts from Latin America convened in Brazil, in May of 2007, for consensus recommendations regarding the management of neuroendocrine tumors ( NETs) of the gastrointestinal tract and pancreas. The recently introduced World Health Organization classification of NETs represents a step forward, but the former classification of carcinoids into foregut, midgut and hindgut is still likely to be useful in the near future. Macroscopic description of the tumor should be followed by light microscopic examination and immunohistochemical staining, whereas other techniques might not be widely available in Latin America. Surgery remains the mainstay of treatment for patients with potentially curable tumors, and adequate selection is paramount in order to optimize treatment results. Regarding systemic therapy, patients with well-differentiated tumors or islet-cell carcinomas may be categorized as having indolent disease, while patients with poorly differentiated, anaplastic, and small-cell carcinomas, or with atypical carcinoids, may be approached initially as having aggressive disease. Somatostatin analogues play a cytostatic role in indolent tumors, and chemotherapy may play a role against other, more aggressive NETs. Obviously, there is an urgent need for novel therapies that are effective against NETs. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
The effect of intra-bone injection of differentiated rat bone marrow mesenchymal stem cells (BMMSCs) into the femur of osteoporotic female rats was studied. Osteoporosis was induced in Wistar female rats by bilateral ovariectomy. Then, 0.75 million BMMSCs isolated from healthy rats were injected into the femurs of osteoporotic rats. Histomorphometric analysis and histology clearly revealed improvements in the treated group as compared to untreated group. In 2 months, the femurs of treated rats, unlike untreated rats, showed trabecular bone percentage almost similar to the femurs from control healthy rats. To confirm the origin of newly formed bone, the experiment was repeated with BMMSCs isolated from green fluorescent protein transgenic rats. Confocal microscopy demonstrated green fluorescent protein-positive cells at the surface of trabecular bone of the treated rats. We investigated in vitro osteogenic differentiation of BMMSCs isolated from osteoporotic rats by studying alkaline phosphatase activity, collagen synthesis, and the ability to form mineralized nodules. Osteoporotic BMMSCs showed less differentiation capabilities as compared to those isolated from healthy rats. The results clearly demonstrated the importance of BMMSCs in osteoporosis and that the disease can be treated by injection of BMMSCs.
Resumo:
Objective: To investigate the possible role of chromatin texture parameters, nuclear morphology, DNA ploidy and clinical functional status in discriminating benign from malignant adrenocortical tumors (ACT). Patients and Methods: Forty-eight cases of clinically benign (n=40) and clinically malignant (n=8) ACT with a minimum of 5-years` follow-up were evaluated for chromatin texture parameters (run length, standard deviation, configurable run length, valley, slope, peak and other 21 Markovian features that describe the distribution of the chromatin in the nucleus), nuclear morphology (nuclear area, nuclear perimeter, nuclear maximum and minumum diameter, nuclear shape), and DNA ploidy. Nuclear parameters were evaluated in Feulgen-stained 5 mu m paraffin-sections analyzed using a CAS 200 image analyzer. Results: Since ACTs present different biological features in children and adults, patients were divided into two groups: children (<= 15 years) and adults (>15 years). In the group of children DNA ploidy presented a marginal significance (p=0.05) in discriminating ACTs. None of the parameters discriminated between malignant and benign ACT in the adult group. Conclusion: ACTs are uncommon and definitive predictive criteria for malignancy remain uncertain, particularly in children. Our data point to DNA content evaluated by image analysis as a new candidate tool for this challenging task. Texture image analysis did not help to differentiate malignant from benign adrenal cortical tumors in children and adults.
Resumo:
Stem cells (SC) are potential therapeutic tools in the treatment of chronic renal diseases. Number and engraftment of SC in the injured sites are important for possible differentiation into renal cells and paracrine effect. The aim of this study was to analyze the effect of subcapsular injection of mesenchymal stem cells (MSC) in the 5/6 nephrectomy model (5/6 Nx). MSC obtained from Wistar rats were isolated by their capacity to adhere to plastic surfaces, characterized by flow cytometry, and analyzed by their differentiation potential into osteoblasts. MSC (2 X 105) were injected into the subcapsule of the remnant kidney of male Wistar rats, and were followed for 15 or 30 days. 5/6 Nx rats showed significant hypertension at 15 and 30 days, which was reduced by MSC at 30 days. Increased albuminuria and serum creatinine at 15 and 30 days in 5/6 Nx rats were also reduced by subcapsular injection of MSC. We also observed a significant reduction of glomerulosclerosis index 30 days after injection of MSC. 4-6 diamidino-2-phenylindole dihydrochloride (DAPI)-stained MSC showed a migration of these cells into renal parenchyma 5, 15, and 30 days after subcapsular injection. In conclusion, our data demonstrated that subcapsular injection of MSC in 5/6 Nx rats is associated with renoprotective effects. These results suggest that locally implanted MSC in the kidney allow a large number of cells to migrate into the injured sites and demonstrate that subcapsular injection represent an effective route for MSC delivery.
Resumo:
Background: Adrenocortical tumors are heterogeneous neoplasms with incompletely understood pathogenesis. IGF-II overexpression has been consistently demonstrated in adult adrenocortical carcinomas. Objectives: The objective of the study was to analyze expression of IGF-II and its receptor (IGF-IR) in pediatric and adult adrenocortical tumors and the effects of a selective IGF-IR kinase inhibitor (NVP-AEW541) on adrenocortical tumor cells. Patients: Fifty-seven adrenocortical tumors (37 adenomas and 20 carcinomas) from 23 children and 34 adults were studied. Methods: Gene expression was determined by quantitative real-time PCR. Cell proliferation and apoptosis were analyzed in NCI H295 cells and a new cell line established from a pediatric adrenocortical adenoma. Results: IGF-II transcripts were overexpressed in both pediatric adrenocortical carcinomas and adenomas. Otherwise, IGF-II was mainly overexpressed in adult adrenocortical carcinomas (270.5 +/- 130.2 vs. 16.1 +/- 13.3; P = 0.0001). IGF-IR expression was significantly higher in pediatric adrenocortical carcinomas than adenomas (9.1 +/- 3.1 vs. 2.6 +/- 0.3; P = 0.0001), whereas its expression was similar in adult adrenocortical carcinomas and adenomas. IGF-IR expression was a predictor of metastases in pediatric adrenocortical tumors in univariate analysis (hazard ratio 1.84; 95% confidence interval 1.28 -2.66; P = 0.01). Furthermore, NVP-AEW541 blocked cell proliferation in a dose-and time-dependent manner in both cell lines through a significant increase of apoptosis. Conclusion: IGF-IR overexpression was a biomarker of pediatric adrenocortical carcinomas. Additionally, a selective IGF-IR kinase inhibitor had antitumor effects in adult and pediatric adrenocortical tumor cell lines, suggesting that IGF-IR inhibitors represent a promising therapy for human adrenocortical carcinoma.
Resumo:
Galectin-3 is a glycan-binding protein that mediates cell-cell and/or cell-extracellular matrix (ECM) interactions. Although galectin-3 is implicated in the progression of various types of cancers, the mechanisms by which galectin-3 enhances metastasis remain unclear. In order to elucidate the role of galectin-3 in the complex multistage process of cancer metastasis, we examined galectin-3 and galectin-3-binding site expression in a series of 82 spontaneous canine mammary tumors (CMT) and two CMT cell lines. Benign CMT tumors exhibited strong nuclear/cytoplasmic galectin-3 immunostaining, whereas malignant CMT tumors and metastases exhibited dramatically decreased galectin-3 expression with the majority of the immunostaining confined to the cytoplasm. Interestingly, intravascular tumor cells overexpressed galectin-3 regardless of their location. CMT-U27 xenografts displayed the same pattern of galectin-3 expression found in spontaneous malignant CMT. In parallel with the downregulation of galectin-3, malignant CMT displayed an overall loss of galectin-3-binding sites in the ECM and focal expression of galectin-3-binding sites mainly detected in intravascular tumor cells and endothelium. Furthermore, loss of galectin-3-binding sites was correlated with the downregulation of GLT25D1, a beta (1-O) galactosyltransferase that modifies collagen, and upregulation of stromal galectin-1. Finally, GLT25D1 mRNA expression was strikingly downregulated in malignant CMT-U27 compared with the benign cell line, and its expression was further de-creased in a galectin-3 knockdown CMT-U27 cell line. We therefore hypothesized that the loss of galectin-3-binding sites in the ECM in conjunction with the overexpression of galectin-3 in specific tumor cell subpopulations are crucial events for the development of mammary tumor metastases.
Resumo:
Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a ""boost"" to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels., compared with 3D-CRT. Intensity-modulated radiotherapy provided of 20, 30, and 40 Gy, respectively statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment. (C) 2010 Elsevier Inc.