872 resultados para medically supervised injectable maintenance clinic
Resumo:
This paper suggests that, while advertising has changed, advertising research has not. Indeed, questions asked of advertising research more than 20 years ago have still not been answered. The enormity of change in advertising compounded by the lack of response from researchers suggests the traditional academic advertising research model requires more than routine maintenance. It seeks an architect with vision to redesign an academic research model that is probably broken or badly outdated. Five areas of the academic research approach are identified as needing rethinking: (1) the advertising problem, (2) sample frame and subjects, (3) assumptions regarding consumer behaviour, (4) research methodologies and (5) findings. Suggestions are made for improvement. But perhaps the biggest challenge is academic leadership. This paper proposes the establishment of a blue-ribbon panel to report back on recommended changes or improvements.
Resumo:
Statistics indicate that the percentage of fatal industrial accidents arising from repair, maintenance, minor alteration and addition (RMAA) works in Hong Kong was disturbingly high and was over 56% in 2006. This paper provides an initial report of a research project funded by the Research Grants Council (RGC) of the HKSAR to address this safety issue. The aim of this study is to scrutinize the causal relationship between safety climate and safety performance in the RMAA sector. It aims to evaluate the safety climate in the RMAA sector; examine its impacts on safety performance, and recommend measures to improve safety performance in the RMAA sector. This paper firstly reports on the statistics of construction accidents arising from RMAA works. Qualitative and quantitative research methods applied in conducting the research are dis-cussed. The study will critically review these related problems and provide recommendations for improving safety performance in the RMAA sector.
Resumo:
Background: In order to maintain cellular viability and genetic integrity cells must respond quickly following the induction of cytotoxic double strand DNA breaks (DSB). This response requires a number of processes including stabilisation of the DSB, signalling of the break and repair. It is becoming increasingly apparent that one key step in this process is chromatin remodelling. Results: Here we describe the chromodomain helicase DNA-binding protein (CHD4) as a target of ATM kinase. We show that ionising radiation (IR)-induced phosphorylation of CHD4 affects its intranuclear organization resulting in increased chromatin binding/retention. We also show assembly of phosphorylated CHD4 foci at sites of DNA damage, which might be required to fulfil its function in the regulation of DNA repair. Consistent with this, cells overexpressing a phospho-mutant version of CHD4 that cannot be phosphorylated by ATM fail to show enhanced chromatin retention after DSBs and display high rates of spontaneous damage. Conclusion: These results provide insight into how CHD4 phosphorylation might be required to remodel chromatin around DNA breaks allowing efficient DNA repair to occur.
Resumo:
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two singlestranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Resumo:
This paper proposes a semi-supervised intelligent visual surveillance system to exploit the information from multi-camera networks for the monitoring of people and vehicles. Modules are proposed to perform critical surveillance tasks including: the management and calibration of cameras within a multi-camera network; tracking of objects across multiple views; recognition of people utilising biometrics and in particular soft-biometrics; the monitoring of crowds; and activity recognition. Recent advances in these computer vision modules and capability gaps in surveillance technology are also highlighted.
Resumo:
The concept of constructability uses integration art of individual functions through a valuable and timely construction inputs into planning and design development stages. It results in significant savings in cost and time needed to finalize infrastructure projects. However, available constructability principles, developed by CII Australia (1993), do not cover Operation and Maintenance (O&M) phases of projects, whilst major cost and time in multifaceted infrastructure projects are spent in post-occupancy stages. This paper discusses the need to extend the constructability concept by examining current O&M issues in the provision of multifaceted building projects. It highlights available O&M problems and shortcomings of building projects, as well as their causes and reasons in different categories. This initial categorization is an efficient start point for testing probable present O&M issues in various cases of complex infrastructure building projects. This preliminary categorization serve as a benchmark to develop an extended constructability model that considers the whole project life cycle phases rather than a specific phase. It anticipates that the development of an extended constructability model can reduce significant number of reworks, mistakes, extra costs and time wasted during delivery stages of multifaceted building projects.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
Distributed pipeline assets systems are crucial to society. The deterioration of these assets and the optimal allocation of limited budget for their maintenance correspond to crucial challenges for water utility managers. Decision makers should be assisted with optimal solutions to select the best maintenance plan concerning available resources and management strategies. Much research effort has been dedicated to the development of optimal strategies for maintenance of water pipes. Most of the maintenance strategies are intended for scheduling individual water pipe. Consideration of optimal group scheduling replacement jobs for groups of pipes or other linear assets has so far not received much attention in literature. It is a common practice that replacement planners select two or three pipes manually with ambiguous criteria to group into one replacement job. This is obviously not the best solution for job grouping and may not be cost effective, especially when total cost can be up to multiple million dollars. In this paper, an optimal group scheduling scheme with three decision criteria for distributed pipeline assets maintenance decision is proposed. A Maintenance Grouping Optimization (MGO) model with multiple criteria is developed. An immediate challenge of such modeling is to deal with scalability of vast combinatorial solution space. To address this issue, a modified genetic algorithm is developed together with a Judgment Matrix. This Judgment Matrix is corresponding to various combinations of pipe replacement schedules. An industrial case study based on a section of a real water distribution network was conducted to test the new model. The results of the case study show that new schedule generated a significant cost reduction compared with the schedule without grouping pipes.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
Engineering asset management (EAM) is a broad discipline and the EAM functions and processes are characterized by its distributed nature. However, engineering asset nowadays mostly relies on self-maintained experiential rule bases and periodic maintenance, which is lacking a collaborative engineering approach. This research proposes a collaborative environment integrated by a service center with domain expertise such as diagnosis, prognosis, and asset operations. The collaborative maintenance chain combines asset operation sites, service center (i.e., maintenance operation coordinator), system provider, first tier collaborators, and maintenance part suppliers. Meanwhile, to realize the automation of communication and negotiation among organizations, multiagent system (MAS) technique is applied to enhance the entire service level. During the MAS design processes, this research combines Prometheus MAS modeling approach with Petri-net modeling methodology and unified modeling language to visualize and rationalize the design processes of MAS. The major contributions of this research include developing a Petri-net enabled Prometheus MAS modeling methodology and constructing a collaborative agent-based maintenance chain framework for integrated EAM.
Resumo:
The topic of fault detection and diagnostics (FDD) is studied from the perspective of proactive testing. Unlike most research focus in the diagnosis area in which system outputs are analyzed for diagnosis purposes, in this paper the focus is on the other side of the problem: manipulating system inputs for better diagnosis reasoning. In other words, the question of how diagnostic mechanisms can direct system inputs for better diagnosis analysis is addressed here. It is shown how the problem can be formulated as decision making problem coupled with a Bayesian Network based diagnostic mechanism. The developed mechanism is applied to the problem of supervised testing in HVAC systems.
Resumo:
This paper presents a group maintenance scheduling case study for a water distributed network. This water pipeline network presents the challenge of maintaining aging pipelines with the associated increases in annual maintenance costs. The case study focuses on developing an effective maintenance plan for the water utility. Current replacement planning is difficult as it needs to balance the replacement needs under limited budgets. A Maintenance Grouping Optimization (MGO) model based on a modified genetic algorithm was utilized to develop an optimum group maintenance schedule over a 20-year cycle. The adjacent geographical distribution of pipelines was used as a grouping criterion to control the searching space of the MGO model through a Judgment Matrix. Based on the optimum group maintenance schedule, the total cost was effectively reduced compared with the schedules without grouping maintenance jobs. This optimum result can be used as a guidance to optimize the current maintenance plan for the water utility.
Resumo:
Background Colorectal cancer (CRC) diagnosis and the ensuing treatments can have a substantial impact on the physical and psychological health of survivors. As the number of CRC survivors increases, so too does the need to develop viable rehabilitation programs to help these survivors return to good health as quickly as possible. Exercise has the potential to address many of the adverse effects of CRC treatment; however, to date, the role of exercise in the rehabilitation of cancer patients immediately after the completion of treatment has received limited research attention. This paper presents the design of a randomised controlled trial which will evaluate the feasibility and efficacy of a 12-week supervised aerobic exercise program (ImPACT Program) on the physiological and psychological markers of rehabilitation, in addition to biomarkers of standard haematological outcomes and the IGF axis. Methods/Design Forty CRC patients will be recruited through oncology clinics and randomised to an exercise group or a usual care control group. Baseline assessment will take place within 4 weeks of the patient completing adjuvant chemotherapy treatment. The exercise program for patients in the intervention group will commence a week after the baseline assessment. The program consists of three supervised moderate-intensity aerobic exercise sessions per week for 12 weeks. All participants will have assessments at baseline (0 wks), mid-intervention (6 wks), post-intervention (12 wks) and at a 6-week follow-up (18 wks). Outcome measures include cardio-respiratory fitness, biomarkers associated with health and survival, and indices of fatigue and quality of life. Process measures are participants' acceptability of, adherence to, and compliance with the exercise program, in addition to the safety of the program. Discussion The results of this study will provide valuable insight into the role of supervised exercise in improving life after CRC. Additionally, process analyses will inform the feasibility of implementing the program in a population of CRC patients immediately after completing chemotherapy.