921 resultados para measurement of noise
Resumo:
Conventional methods for detecting differences in microsatellite repeat lengths rely on electrophoretic fractionation on long denaturing polyacrylamide gels, a time-consuming and labor-intensive method. Therefore, there is a need for the development of new and rapid approaches to routinely detect such length polymorphisms. The advent of techniques allowing the coupling of DNA molecules to solid surfaces has provided new prospects in the area of mutation. We describe here the development and optimization of the ligase-assisted spacer addition (LASA) method, a novel and rapid procedure based on an ELISA format to measure microsatellite repeat lengths. The LASA assay was successfully applied to a set of 11 bird samples to assess its capability as a genotyping method.
Resumo:
Conventional whole-body single frequency bioelectrical impedance analysis (BIA) of body composition typically uses height as a surrogate measure of conductor length. A new method of BIA analysis for the prediction of body cell mass (BCM) and extracellular water (ECW, as % body weight) not using height has been introduced-the Soft Tissue Analyser (STA(TM), Akern Sri, Florence, Italy)-making it ideal for use in subjects where measurement of height is difficult or impossible. The performance of the new analytical method in predicting BCM and ECW in 139 normal control subjects was assessed by comparison with reference data obtained from a four-component (4-C) model of body composition and with predictions obtained from conventional BIA analysis. Both predicted BCM and ECW were strongly (r = 0.82, SEE = 6.3 kg and 0.89, SEE = 1.3 kg respectively) correlated with the corresponding 4-C model measurements although differing significantly from the lines of identity (P < 0.0001). Fat-free mass, calculated from STA estimates of BCM and ECW, was better predicted (r = 0.91, SEE = 5.6 kg). The significant differences in STA-group mean values for BCM and ECW and wide limits of agreement compared with the reference data indicate that the method cannot be used with confidence for prediction of these body compartments despite the obvious advantage of not requiring an accurate measurement of height. (C) 2001 Harcourt Publishers Ltd.
Resumo:
Concerns have been raised about the reproducibility of brachial artery reactivity (BAR), because subjective decisions regarding the location of interfaces may influence the measurement of very small changes in lumen diameter. We studied 120 consecutive patients with BAR to address if an automated technique could be applied, and if experience influenced reproducibility between two observers, one experienced and one inexperienced. Digital cineloops were measured automatically, using software that measures the leading edge of the endothelium and tracks this in sequential frames and also manually, where a set of three point-to-point measurements were averaged. There was a high correlation between automated and manual techniques for both observers, although less variability was present with expert readers. The limits of agreement overall for interobserver concordance were 0.13 +/-0.65 mm for the manual and 0.03 +/-0.74 mm for the automated measurement. For intraobserver concordance, the limits of agreement were -0.07 +/-0.38 mm for observer 1 and -0.16 +/-0.55 mm for observer 2. We concluded that BAR measurements were highly concordant between observers, although more concordant using the automated method, and that experience does affect concordance. Care must be taken to ensure that the same segments are measured between observers and serially.
Resumo:
There is currently some debate about whether the energy expenditure of domestic tasks is sufficient to confer health benefits. The aim of this study was therefore to measure the energy cost of five activities commonly undertaken by mothers of young children. Seven women with at least one child younger than five years of age spent 15 minutes in each of the following activities: sitting quietly, vacuum cleaning, washing windows, walking at moderate pace (approx 5km/hour), walking with a stroller and grocery shopping in a super-market. Each of the six 'trials' was completed on the same day, in random order. A carefully calibrated portable gas analyser was used to measure oxygen uptake during each activity, and data were converted to units of energy expenditure (METS). Vacuum cleaning, washing windows and walking with and without a stroller were found to be 'moderate intensity activities' (3 to 6 METs), but supermarket shopping did not reach this criterion. The MET values for these activities were similar to those reported in the Compendium of Physical Activities (Ainsworth et al., 2000). However, the energy expenditures of walking, both with and without a stroller, were higher than those reported in the Compendium. The findings suggest that some of the tasks associated with domestic caring duties are conducted at an intensity which is sufficient to confer some health benefit. Such benefits will only accrue however if the daily duration of these activities is sufficient to meet current guidelines.
Resumo:
We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement.
Resumo:
Expansion tubes operating at total flow enthalpies of 100 MJ kg(-1) or more have characteristical test times of 30-50 mus. Under these conditions, the response time of the Pitot pressure measuring device is critical when performing flow calibration studies. The conventional technique of using a commercial pressure transducer protected by shielding has not always proven to be effective, due to the relatively large (and variable) response time caused by the shielding. A device called the stress wave bar gauge has been designed and calibrated and shown to be an effective way to measure the Pitot pressure with a response time of only 2-3 mus.
Resumo:
We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum two-level systems (qubits). Our particular emphasis is on qubits realized by the two polarization degrees of freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion applies in general, regardless of the actual physical realization. Two techniques are discussed, namely, a tomographic reconstruction (in which the density matrix is linearly related to a set of measured quantities) and a maximum likelihood technique which requires numerical optimization (but has the advantage of producing density matrices that are always non-negative definite). In addition, a detailed error analysis is presented, allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation, to be estimated. Examples based on down-conversion experiments are used to illustrate our results.
Resumo:
Lateral ventricular volumes based on segmented brain MR images can be significantly underestimated if partial volume effects are not considered. This is because a group of voxels in the neighborhood of lateral ventricles is often mis-classified as gray matter voxels due to partial volume effects. This group of voxels is actually a mixture of ventricular cerebro-spinal fluid and the white matter and therefore, a portion of it should be included as part of the lateral ventricular structure. In this note, we describe an automated method for the measurement of lateral ventricular volumes on segmented brain MR images. Image segmentation was carried in combination of intensity correction and thresholding. The method is featured with a procedure for addressing mis-classified voxels in the surrounding of lateral ventricles. A detailed analysis showed that lateral ventricular volumes could be underestimated by 10 to 30% depending upon the size of the lateral ventricular structure, if mis-classified voxels were not included. Validation of the method was done through comparison with the averaged manually traced volumes. Finally, the merit of the method is demonstrated in the evaluation of the rate of lateral ventricular enlargement. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
A two-dimensional numerical simulation model of interface states in scanning capacitance microscopy (SCM) measurements of p-n junctions is presented-In the model, amphoteric interface states with two transition energies in the Si band gap are represented as fixed charges to account for their behavior in SCM measurements. The interface states are shown to cause a stretch-out-and a parallel shift of the capacitance-voltage characteristics in the depletion. and neutral regions of p-n junctions, respectively. This explains the discrepancy between - the SCM measurement and simulation near p-n junctions, and thus modeling interface states is crucial for SCM dopant profiling of p-n junctions. (C) 2002 American Institute of Physics.
Resumo:
The association of sustained cerebral edema with poor neurological outcome following hypoxia-ischaemia in the neonate suggests that measurement of cerebral edema may allow early prediction of outcome in these infants. Direct measurements of cerebral impedance have been widely used in animal studies to monitor cerebral edema, but such invasive measurements are not possible in the human neonate. This study investigated the ability of noninvasive cerebral impedance measurements to detect cerebral edema following hypoxia-ischaemia. One-day-old piglets were anaesthetized, intubated and ventilated. Hypoxia was induced by reducing the inspired oxygen concentration to 4-6% O-2. Noninvasive cerebral bioimpedance was measured using gel electrodes attached to the scalp. Cerebral bioimpedance was also measured directly by insertion of two silver-silver chloride electrodes subdurally. Noninvasive and invasive measurements were made before, during and after hypoxia. Whole body impedance was measured to assess overall fluid movements. Intracranial pressure was measured continuously via a catheter inserted subdurally, as an index of cerebral edema. There was good agreement between noninvasive and invasive measurements of cerebral impedance although externally obtained responses were attenuated. Noninvasive measurements were also well correlated with intracranial pressure. Whole body impedance changes did not account for increases in noninvasively measured cerebral impedance. Results suggest that noninvasive cerebral impedance measurements do reflect intracranial events, and are able to detect cerebral edema following hypoxia-ischaemia in the neonate. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Improvements to the routine methods for the determination of actual acidity in suspension for acid sulfate soils (ASS) are introduced. The titratable sulfidic acidity (TSA) results using an improved peroxide-based method were compared with the theoretical acidity predicted by the chromium reducible sulfur method for 9 acid sulfate soils. The regression between these 2 measures of sulfidic acidity was highly significant, the slope of the regression line not significantly different from unity (P = 0.05) and the intercept not significantly different from zero. This contrasts with results of other workers using earlier peroxide oxidation methods, where TSA substantially underestimated the theoretical acidity predicted by reduced inorganic sulfur analysis. Comparison was made between the 2 principal measurements from the improved peroxide method (TSA and S-POS), with S-POS converted to theoretical sulfidic acidity to allow comparison. The relationship between these 2 measurements was highly significant. The effects of titration in suspension, as well as raising titration end points to pH 6.5, were investigated, principally with respect to the titratable actual acidity (TAA) result. TAA results obtained by KCl extraction were compared with those obtained using BaCl2, MgCl2, and water extraction. TAA in 1 M KCl suspensions titrated to pH 6.5 agreed well with titratable actual acidity measured using the 25-h extraction approach of the Lin et al. (2000a) BaCl2 method. Both BaCl2 and KCl solutions were ineffective at fully recovering acidity from synthetic jarosite without repeated extraction and titration. The application of correction factors for the estimation of total actual acidity in ASS is not supported by the results of this investigation. Acid sulfate soils that contain substantial quantities of jarosite or other acid-producing but relatively insoluble sulfate minerals continue to prove problematic to chemically analyse; however, an approach for estimating this component is discussed.
Resumo:
An acceleration compensated transducer was developed to enable the direct measurement of skin friction in hypervelocity impulse facilities. The gauge incorporated a measurement and acceleration element that employed direct shear of a piezoelectric ceramic. The design integrated techniques to maximize rise time and shear response while minimizing the affects of acceleration, pressure, heat transfer, and electrical interference. The arrangement resulted in a transducer natural frequency near 40 kHz. The transducer was calibrated for shear and acceleration in separate bench tests and was calibrated for pressure within an impulse facility. Uncertainty analyses identified only small experimental errors in the shear and acceleration calibration techniques. Although significant errors were revealed in the method of pressure calibration, total skin-friction measurement errors as low as +/-7-12% were established. The transducer was successfully utilized in a shock tunnel, and sample measurements are presented for flow conditions that simulate a flight Mach number near 8.