999 resultados para magnetic cluster


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the course of this work the effect of metal substitution on the structural and magnetic properties of the double perovskites Sr2MM’O6 (M = Fe, substituted by Cr, Zn and Ga; M’ = Re, substituted by Sb) was explored by means of X-ray diffraction, magnetic measurements, band structure calculations, Mößbauer spectroscopy and conductivity measurements. The focus of this study was the determination of (i) the kind and structural boundary conditions of the magnetic interaction between the M and M’ cations and (ii) the conditions for the principal application of double perovskites as spintronic materials by means of the band model approach. Strong correlations between the electronic, structural and magnetic properties have been found during the study of the double perovskites Sr2Fe1-xMxReO6 (0 < x < 1, M = Zn, Cr). The interplay between van Hove-singularity and Fermi level plays a crucial role for the magnetic properties. Substitution of Fe by Cr in Sr2FeReO6 leads to a non-monotonic behaviour of the saturation magnetization (MS) and an enhancement for substitution levels up to 10 %. The Curie temperatures (TC) monotonically increase from 401 to 616 K. In contrast, Zn substitution leads to a continuous decrease of MS and TC. The diamagnetic dilution of the Fe-sublattice by Zn leads to a transition from an itinerant ferrimagnetic to a localized ferromagnetic material. Thus, Zn substitution inhibits the long-range ferromagnetic interaction within the Fe-sublattice and preserves the long-range ferromagnetic interaction within the Re-sublattice. Superimposed on the electronic effects is the structural influence which can be explained by size effects modelled by the tolerance factor t. In the case of Cr substitution, a tetragonal – cubic transformation for x > 0.4 is observed. For Zn substituted samples the tetragonal distortion linearly increases with increasing Zn content. In order to elucidate the nature of the magnetic interaction between the M and M’ cations, Fe and Re were substituted by the valence invariant main group metals Ga and Sb, respectively. X-ray diffraction reveals Sr2FeRe1-xSbxO6 (0 < x < 0.9) to crystallize without antisite disorder in the tetragonal distorted perovskite structure (space group I4/mmm). The ferrimagnetic behaviour of the parent compound Sr2FeReO6 changes to antiferromagnetic upon Sb substitution as determined by magnetic susceptibility measurements. Samples up to a doping level of 0.3 are ferrimagnetic, while Sb contents higher than 0.6 result in an overall antiferromagnetic behaviour. 57Fe Mößbauer results show a coexistence of ferri- and antiferromagnetic clusters within the same perovskite-type crystal structure in the Sb substitution range 0.3 < x < 0.8, whereas Sr2FeReO6 and Sr2FeRe0.9Sb0.1O6 are “purely” ferrimagnetic and Sr2FeRe0.1Sb0.9O6 contains antiferromagnetically ordered Fe sites only. Consequently, a replacement of the Re atoms by a nonmagnetic main group element such as Sb blocks the double exchange pathways Fe–O–Re(Sb)–O–Fe along the crystallographic axis of the perovskite unit cell and destroys the itinerant magnetism of the parent compound. The structural and magnetic characterization of Sr2Fe1-xGaxReO6 (0 < x < 0.7) exhibit a Ga/Re antisite disorder which is unexpected because the parent compound Sr2FeReO6 shows no Fe/Re antisite disorder. This antisite disorder strongly depends on the Ga content of the sample. Although the X-ray data do not hint at a phase separation, sample inhomogeneities caused by a demixing are observed by a combination of magnetic characterization and Mößbauer spectroscopy. The 57Fe Mößbauer data suggest the formation of two types of clusters, ferrimagnetic Fe- and paramagnetic Ga-based ones. Below 20 % Ga content, Ga statistically dilutes the Fe–O–Re–O–Fe double exchange pathways. Cluster formation begins at x = 0.2, for 0.2 < x < 0.4 the paramagnetic Ga-based clusters do not contain any Fe. Fe containing Ga-based clusters which can be detected by Mößbauer spectroscopy firstly appear for x = 0.4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radio relics are diffuse synchrotron sources generally located in the peripheries of galaxy clusters in merging state. According to the current leading scenario, relics trace gigantic cosmological shock waves that cross the intra-cluster medium where particle acceleration occurs. The relic/shock connection is supported by several observational facts, including the spatial coincidence between relics and shocks found in the X-rays. Under the assumptions that particles are accelerated at the shock front and are subsequently deposited and then age downstream of the shock, Markevitch et al. (2005) proposed a method to constrain the magnetic field strength in radio relics. Measuring the thickness of radio relics at different frequencies allows to derive combined constraints on the velocity of the downstream flow and on the magnetic field, which in turns determines particle aging. We elaborate this idea to infer first constraints on magnetic fields in cluster outskirts. We consider three models of particle aging and develop a geometric model to take into account the contribution to the relic transverse size due to the projection of the shock-surface on the plane of the sky. We selected three well studied radio relics in the clusters A 521, CIZA J2242.8+5301 and 1RXS J0603.3+4214. These relics have been chosen primarily because they are almost seen edge-on and because the Mach number of the shock that is associated with these relics is measured by X-ray observations, thus allowing to break the degeneracy between magnetic field and downstream velocity in the method. For the first two clusters, our method is consistent with a pure radiative aging model allowing us to derive constraints on the relics magnetic field strength. In the case of 1RXS J0603.3+4214 we find that particle life-times are consistent with a pure radiative aging model under some conditions, however we also collect evidences for downstream particle re-acceleration in the relic W-region and for a magnetic field decaying downstream in its E-region. Our estimates of the magnetic field strength in the relics in A 521 and CIZA J2242.8+5301 provide unique information on the field properties in cluster outskirts. The constraints derived for these relics, together with the lower limits to the magnetic field that we derived from the lack of inverse Compton X-ray emission from the sources, have been combined with the constraints from Faraday rotation studies of the Coma cluster. Overall results suggest that the spatial profile of the magnetic field energy density is broader than that of the thermal gas, implying that the ε_th /ε_B ratio decreases with cluster radius. Alternatively, radio relics could trace dynamically active regions where the magnetic field strength is biased high with respect to the average value in the cluster volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different synthetic routes have been used for the preparation of a new tetranuclear [Fe4O2(O2CCMe3)(8)(bpm)] cluster (1) and a one-dimensional coordination polymer [Fe4O2-(O2CCMe3)(8)(hmta)](n) (2) (bpm = 2,2'-bipyrimidine and hmta = hexamethylenetetramine). For cluster 1, two structural isomers, 1a and 1b center dot 3MeCN, have been found. X-ray crystallographic analysis showed that all complexes consist of a central {Fe-4(mu(3)-O)(2)}(8+) core. In 1a, metal ions in the core are additionally linked by six bridging pivalates as two other pivalates and a bpm ligand are chelated to Fe-III ions, whereas in cluster 1b, metal ions in the {Fe-4(mu(3)-O)(2)}(8+) core are linked by seven bridging pivalates and only one carboxylate as well as bpm are chelated to the iron centers. In coordination polymer 2, [Fe4O2(O2CCMe3)(8)] clusters are bridged by hmta ligands to form zigzag chains. Magnetic measurements have been carried out to characterize these complexes and revealed antiferromagnetic interactions between Fe-III ions with best-fit parameters of J(wb) = -72.2 (1a) and -88.7 cm(-1) (1b) for wing...body interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Rock magnetic, biochemical and inorganic records of the sediment cores PG1351 and Lz1024 from Lake El’gygytgyn, Chukotka peninsula, Far East Russian Arctic, were subject to a hierarchical agglomerative cluster analysis in order to refine and extend the pattern of climate modes as defined by Melles et al. (2007). Cluster analysis of the data obtained from both cores yielded similar results, differentiating clearly between the four climate modes warm, peak warm, cold and dry, and cold and moist. In addition, two transitional phases were identified, representing the early stages of a cold phase and slightly colder conditions during a warm phase. The statistical approach can thus be used to resolve gradual changes in the sedimentary units as an indicator of available oxygen in the hypolimnion in greater detail. Based upon cluster analyses on core Lz1024, the published succession of climate modes in core PG1351, covering the last 250 ka, was modified and extended back to 350 ka. Comparison to the marine oxygen isotope (�18O) stack LR04 (Lisiecki and Raymo, 2005) and the summer insolation at 67.5� N, with the extended Lake El’gygytgyn parameter records of magnetic susceptibility (�LF), total organic carbon content (TOC) and the chemical index of alteration (CIA; Minyuk et al., 2007), revealed that all stages back to marine isotope stage (MIS) 10 and most of the substages are clearly reflected in the pattern derived from the cluster analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds:  [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a suite of new high-resolution records (0-135 ka) representing pulses of aeolian, fluvial, and biogenic sedimentation along the Senegalese continental margin. A multiproxy approach based on rock magnetic, element, and color data was applied on three cores enclosing the present-day northern limit of the ITCZ. A strong episodic aeolian contribution driven by stronger winds and dry conditions and characterized by high hematite and goethite input was revealed north of 13°N. These millennial-scale dust fluxes are synchronous with North Atlantic Heinrich stadials. Fluvial clay input driven by the West African monsoon predominates at 12°N and varies at Dansgaard-Oeschger time scales while marine productivity is strongly enhanced during the African humid periods and marine isotope stage 5. From latitudinal signal variations, we deduce that the last glacial ITCZ summer position was located between core positions at 12°26' and 13°40'N. Furthermore, this work also shows that submillennial periods of aridity over northwest Africa occurred more frequently and farther south than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron spin echo electron-nuclear double resonance (ESE-ENDOR) experiments performed on a broad radical electron paramagnetic resonance (EPR) signal observed in photosystem II particles depleted of Ca2+ indicate that this signal arises from the redox-active tyrosine YZ. The tyrosine EPR signal width is increased relative to that observed in a manganese-depleted preparation due to a magnetic interaction between the photosystem II manganese cluster and the tyrosine radical. The manganese cluster is located asymmetrically with respect to the symmetry-related tyrosines YZ and YD. The distance between the YZ tyrosine and the manganese cluster is estimated to be approximately 4.5 A. Due to this close proximity of the Mn cluster and the redox-active tyrosine YZ, we propose that this tyrosine abstracts protons from substrate water bound to the Mn cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, to determine their activity level, spot distribution, and differential rotation. Both stars were previously discovered by us to be young stars and were observed by the NASA Kepler mission. Methods. The fundamental stellar parameters (vsini, spectral type, T_eff, log g, and [Fe/H]) were derived from optical spectroscopy by comparison with both standard-star and synthetic spectra. The spectra of the targets allowed us to study the chromospheric activity based on the emission in the core of hydrogen Hα and Ca ii infrared triplet (IRT) lines, which was revealed by the subtraction of inactive templates. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation were performed in a Bayesian manner, using a Markov chain Monte Carlo method. Results. We find that both stars are Sun-like (of G1.5 V spectral type) and have an age of about 100–200 Myr, based on their lithium content and kinematics. Their youth is confirmed by their high level of chromospheric activity, which is comparable to that displayed by the early G-type stars in the Pleiades cluster. The Balmer decrement and flux ratio of their Ca ii-IRT lines suggest that the formation of the core of these lines occurs mainly in optically thick regions that are analogous to solar plages. The spot model applied to the Kepler photometry requires at least seven persistent spots in the case of KIC 7985370 and nine spots in the case of KIC 7765135 to provide a satisfactory fit to the data. The assumption of the longevity of the star spots, whose area is allowed to evolve with time, is at the heart of our spot-modelling approach. On both stars, the surface differential rotation is Sun-like, with the high-latitude spots rotating slower than the low-latitude ones. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dΩ ≈ 0.18 rad d^-1), which disagrees with the predictions of some mean-field models of differential rotation for rapidly rotating stars. Our results agree instead with previous works on solar-type stars and other models that predict a higher latitudinal shear, increasing with equatorial angular velocity, that can vary during the magnetic cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse γ-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E ≥ 100 GeV) for a total of 253 hr from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6º from the centre, have been detected as point-like VHE γ-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is described well by a power law with a photon index Γ = 3.6 ± 0.2_(stat) ± 0.2_(syst) between 90 GeV and 1200 GeV. We do not detect any diffuse γ-ray emission from the cluster and so set stringent constraints on its CR population. To bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes α. For α = 2.2, the CR-to-thermal pressure within the cluster virial radius is constrained to be ≤ 1 − 2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to ≤ 20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, B_(0), that depend on the CR distribution. For α = 2.2, B_(0) ≥ 5 − 8 µG, which is below the ∼25 µG inferred from Faraday rotation measurements, whereas for α ≤ 2.1, the hadronic interpretation of the diffuse radio emission contrasts with our γ-ray flux upper limits independently of the magnetic field strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface sediment samples representative for the tropical and subtropical South Atlantic (15°N to 40°S) were investigated by isothermal magnetic methods to delineate magnetic mineral distribution patterns and to identify their predominant Holocene climatic and oceanographic controls. Individual parameters reveal distinct, yet frequently overlapping, regional sedimentation characteristics. A probabilistic ('fuzzy c-means') cluster analysis was applied to five concentration independent magnetic properties assessing magnetite to hematite ratios and diagnostic of bulk and fine-particle magnetite grain size and coercivity spectra. The resultant 10 cluster structures establish an oceanwide magnetic sediment classification scheme tracing the major terrigenous eolian and fluvial fluxes, authigenic biogenic magnetite accumulation in high-productivity areas, transport by ocean current systems, and effects of bottom water velocity on depositional regimes. Distinct dissimilarities in magnetic mineral inventories between the eastern and western basins of the South Atlantic reflect prominent contrasts of both oceanic and continental influences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular nanomagnets are spin clusters whose topology and magnetic interactions can be modulated at the level of the chemical synthesis. They are formed by a small number of transition metal ions coupled by the Heisenberg's exchange interactions. Each cluster is magnetically isolated from its neighbors by organic ligands, making each unit not interacting with the others. Therefore, we can investigate the magnetic properties of an isolated molecular nanomagnet by bulk measurements. The present thesis has been mostly devoted to the experimental investigation of the magnetic properties and spin dynamics of different classes of antiferromagnetic (AF) molecular rings. This study has been exploiting various techniques of investigations, such as Nuclear Magnetic Resonance (NMR), muon spin relaxation (muSR) and SQUiD magnetometry. We investigate the magnetic properties and the phonon-induced relaxation dynamics of the first regular Cr9 antiferromagnetic (AF) ring, which represents a prototype frustrated AF ring. The magnetically-open AF rings like Cr8Cd are model systems for the study of the microscopic magnetic behaviour of finite AF Heisenberg chains. In this type of system the different magnetic behaviour depends length and on the parity of the chain (odd or even). In order to study the local spin densities on the Cr sites, the Cr-NMR spectra was collected at low temperature. The experimental result confirm the theoretical predictions for the spin configuration. Finally, the study of Dy6, the first rare-earth based ring that has been ever synthesized, has been performed by AC-SQuID and muSR measurements. We found that the dynamics is characterized by more than one characteristic correlation time, whose values depend strongly on the applied field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic fields are ubiquitous in galaxy cluster atmospheres and have a variety of astrophysical and cosmological consequences. Magnetic fields can contribute to the pressure support of clusters, affect thermal conduction, and modify the evolution of bubbles driven by active galactic nuclei. However, we currently do not fully understand the origin and evolution of these fields throughout cosmic time. Furthermore, we do not have a general understanding of the relationship between magnetic field strength and topology and other cluster properties, such as mass and X-ray luminosity. We can now begin to answer some of these questions using large-scale cosmological magnetohydrodynamic (MHD) simulations of the formation of galaxy clusters including the seeding and growth of magnetic fields. Using large-scale cosmological simulations with the FLASH code combined with a simplified model of the acceleration of cosmic rays responsible for the generation of radio halos, we find that the galaxy cluster frequency distribution and expected number counts of radio halos from upcoming low-frequency sur- veys are strongly dependent on the strength of magnetic fields. Thus, a more complete understanding of the origin and evolution of magnetic fields is necessary to understand and constrain models of diffuse synchrotron emission from clusters. One favored model for generating magnetic fields is through the amplification of weak seed fields in active galactic nuclei (AGN) accretion disks and their subsequent injection into cluster atmospheres via AGN-driven jets and bubbles. However, current large-scale cosmological simulations cannot directly include the physical processes associated with the accretion and feedback processes of AGN or the seeding and merging of the associated SMBHs. Thus, we must include these effects as subgrid models. In order to carefully study the growth of magnetic fields in clusters via AGN-driven outflows, we present a systematic study of SMBH and AGN subgrid models. Using dark-matter only cosmological simulations, we find that many important quantities, such as the relationship between SMBH mass and galactic bulge velocity dispersion and the merger rate of black holes, are highly sensitive to the subgrid model assumptions of SMBHs. In addition, using MHD calculations of an isolated cluster, we find that magnetic field strengths, extent, topology, and relationship to other gas quantities such as temperature and density are also highly dependent on the chosen model of accretion and feedback. We use these systematic studies of SMBHs and AGN inform and constrain our choice of subgrid models, and we use those results to outline a fully cosmological MHD simulation to study the injection and growth of magnetic fields in clusters of galaxies. This simulation will be the first to study the birth and evolution of magnetic fields using a fully closed accretion-feedback cycle, with as few assumptions as possible and a clearer understanding of the effects of the various parameter choices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The upper Tortonian Metochia marls on the island of Gavdos provide an ideal geological archive to trace variations in Aegean sediment supply as well as changes in the North African monsoon system. A fuzzy-cluster analysis on the multiproxy geochemical and rock magnetic dataset of the astronomically tuned sedimentary succession shows a dramatic shift in the dominance of 'Aegean tectonic' clusters to 'North African climate' clusters. The tectonic signature, traced by the starvation of the Cretan sediment, now enables to date the late Tortonian basin foundering on Crete, related to the tectonic break-up of the Aegean landmass, at c. 8.2 Ma. The synchronous decrease in the North African climate proxies is interpreted to indicate a change in the depositional conditions of the sink rather than a climatic change in the African source. This illustrates that interpretations of climate proxies require a multiproxy approach which also assesses possible contributions of regional tectonism.