950 resultados para lung calcification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the impact of three different oral nutritional support regimens on lung mechanics and remodelling in young undernourished Wistar rats. In the nutritionally deprived group, rats received one-third of their usual daily food consumption for 4 weeks. Undernourished rats were divided into three groups receiving a balanced, glutamine-supplemented, or long-chain triglyceride-supplemented diet for 4 weeks. In the two control groups, rats received food ad libitum for 4 (C4) or 8 weeks. Lung viscoelastic pressure and static elastance were higher in undernourished compared to C4 rats. After refeeding, lung mechanical data remained altered except for the glutamine-supplemented group. Undernutrition led to a reduced amount of elastic and collagen fibres in the alveolar septa. Elastic fibre content returned to control with balanced and glutamine-supplemented diets, but increased with long-chain triglyceride-supplemented diet. The amount of collagen fibre augmented independent of nutritional support. In conclusion, glutamine-supplemented diet is better at reducing morphofunctional changes than other diets after 4 weeks of refeeding. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the hypothesis that bone marrow-derived mononuclear cells (BMDMCs) at an early phase of cecal ligation and puncture (CLP)-induced sepsis may have lasting effects on: (1) lung mechanics and histology, (2) the structural remodelling of lung parenchyma, (3) lung, kidney, and liver cell apoptosis, and (4) pro- and anti-inflammatory cytokines and growth factors. At day 1, BMDMC significantly reduced mortality, as well as caspase-3, interleukin (IL)-6 and IL-1 beta vascular endothelial growth factor, platelet-derived growth factor, hepatocyte growth factor, and transforming growth factor-beta, but increased IL-10 mRNA expression in lung tissue in septic mice contributing to endothelium and epithelium alveolar repair and improvement of lung mechanics. BMDMC also prevented the increase of apoptotic cells in lung, liver, and kidney. At day 7, these early functional and morphological effects were preserved or further improved. In conclusion, in the present model of sepsis, the beneficial effects of early administration of BMDMCs on lung and distal organs were preserved, possibly by paracrine mechanisms. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 x 10(6)) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Up to 60% of chronic obstructive pulmonary disease ( COPD) patients can present airway hyperresponsiveness. However, it is not known whether the peripheral lung tissue also shows an exaggerated response to agonists in COPD. Objectives: To investigate the in vitro mechanical behavior and the structural and inflammatory changes of peripheral lung tissue in COPD patients and compare to nonsmoking controls. Methods: We measured resistance and elastance at baseline and after acetylcholine (ACh) challenge of lung strips obtained from 10 COPD patients and 10 control subjects. We also assessed the alveolar tissue density of neutrophils, eosinophils, macrophages, mast cells and CD8+ and CD4+ cells, as well as the content of alpha-smooth muscle actin-positive cells and elastic and collagen fibers. We further investigated whether changes in in vitro parenchymal mechanics correlated to structural and inflammatory parameters and to in vivo pulmonary function. Results: Values of resistance after ACh treatment and the percent increase in tissue resistance (%R) were higher in the COPD group (p <= 0.03). There was a higher density of macrophages and CD8+ cells (p < 0.05) and a lower elastic content (p = 0.003) in the COPD group. We observed a positive correlation between %R and eosinophil and CD8+ cell density (r = 0.608, p = 0.002, and r = 0.581, p = 0.001, respectively) and a negative correlation between %R and the ratio of forced expiratory volume in 1 s to forced vital capacity (r = -0.451, p < 0.05). Conclusions: The cholinergic responsiveness of parenchymal lung strips is increased in COPD patients and seems to be related to alveolar tissue eosinophilic and CD8 lymphocytic inflammation and to the degree of airway obstruction on the pulmonary function test. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: In acute lung injury, recruitment maneuvers have been used to open collapsed lungs and set positive end-expiratory pressure, but their effectiveness may depend on the degree of lung injury. This study uses a single experimental model with different degrees of lung injury and tests the hypothesis that recruitment maneuvers may have beneficial or deleterious effects depending on the severity of acute lung injury. We speculated that recruitment maneuvers may worsen lung mechanical stress in the presence of alveolar edema. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-six Wistar rats randomly divided into three groups (n = 12 per group). Interventions: In the control group, saline was intraperitoneally injected, whereas moderate and severe acute lung injury animals received paraquat intraperitoneally (20 mg/kg [moderate acute lung injury] and 25 mg/kg [severe acute lung injury]). After 24 hrs, animals were further randomized into subgroups (n = 6/each) to be recruited (recruitment maneuvers: 40 cm H(2)O continuous positive airway pressure for 40 secs) or not, followed by 1 hr of protective mechanical ventilation (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H(2)O). Measurements and Main Results: Only severe acute lung injury caused alveolar edema. The amounts of alveolar collapse were similar in the acute lung injury groups. Static lung elastance, viscoelastic pressure, hyperinflation, lung, liver, and kidney cell apoptosis, and type 3 procollagen and interleukin-6 mRNA expressions in lung tissue were more elevated in severe acute lung injury than in moderate acute lung injury. After recruitment maneuvers, static lung elastance, viscoelastic pressure, and alveolar collapse were lower in moderate acute lung injury than in severe acute lung injury. Recruitment maneuvers reduced interleukin-6 expression with a minor detachment of the alveolar capillary membrane in moderate acute lung injury. In severe acute lung injury, recruitment maneuvers were associated with hyperinflation, increased apoptosis of lung and kidney, expression of type 3 procollagen, and worsened alveolar capillary injury. Conclusions: In the presence of alveolar edema, regional mechanical heterogeneities, and hyperinflation, recruitment maneuvers promoted a modest but consistent increase in inflammatory and fibrogenic response, which may have worsened lung function and potentiated alveolar and renal epithelial injury. (Crit Care Med 2010; 38: 2207-2214)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the hypothesis that at the early phase of acute lung injury (ALI) the degree of endothelium injury may predict lung parenchyma remodelling For this purpose, two models of extrapulmonary ALI induced by Escherichia col: lipopolysaccharide (ALI-LPS) or cecal ligation and puncture (ALI-CLP) were developed in mice At day 1, these models had similar degrees of lung mechanical compromise, epithelial damage, and intraperitoneal inflammation, but endothelial lesion was greater in ALI-CLP A time course analysis revealed, at day 7 ALI-CLP had higher degrees of epithelial lesion, denudation of basement membrane, endothelial damage, elastic and collagen fibre content, neutrophils in bronchoalveolar lavage fluid (BALF), peritoneal fluid and blood, levels of interleukin-6, KC (murine analogue of IL-8), and transforming growth factor-beta in BALF Conversely, the number of lung apoptotic cells was similar in both groups In conclusion, the intensity of fibroelastogenesis was affected by endothelium injury in addition to the maintenance of epithelial damage and intraperitoneal inflammation. (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of microcystin-LR (MCYST-LR)-induced lung inflammation has never been reported Hence. LASSBio 596, an anti-Inflammatory drug candidate, designed as symbiotic agent that modulates TNF-alpha levels and inhibits phosphodiesterase types 4 and 5, or dexamethasone were tested in this condition Swiss mice were intraperitoneally (i p) injected with 60 mu l of saline (CTRL) or a sub-lethal dose of MCYST-LR (40 mu g/kg). 6 h later they were treated (i p.) with saline (TOX), LASSB10 596 (10 mg/kg, L596), or dexamethasone (1 mg/kg, 0.1 mL, DEXA). 8 h after MCYST-LR injection, pulmonary mechanics were determined, and lungs and livers prepared for histopathology, biochemical analysis and quantification of MCYST-LR. TOX showed significantly higher lung impedance than CTRL and L596, which were similar. DEXA could only partially block the mechanical alterations. In both TOX and DEXA alveolar collapse and inflammatory cell influx were higher than in CTRL and L596, being LASSB10 596 more effective than dexamethasone. TOX showed oxidative stress that was not present in an and L596, while DEXA was partially efficient. MCYST-LR was detected in the livers of all mice receiving MCYST-LR and no recovery was apparent In conclusion, LASSBio 596 was more efficient than dexamethasone in reducing the pulmonary functional impairment induced by MCYST-LR. (C) 2010 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the study was to compare the effects of different assisted ventilation modes with pressure controlled ventilation (PCV) on lung histology, arterial blood gases, inflammatory and fibrogenic mediators in experimental acute lung injury (ALI). Paraquat-induced ALI rats were studied. At 24 h, animals were anaesthetised and further randomized as follows (n = 6/group): (1) pressure controlled ventilation mode (PCV) with tidal volume (V (T)) = 6 ml/kg and inspiratory to expiratory ratio (I:E) = 1:2; (2) three assisted ventilation modes: (a) assist-pressure controlled ventilation (APCV1:2) with I:E = 1:2, (b) APCV1:1 with I:E = 1:1; and (c) biphasic positive airway pressure and pressure support ventilation (BiVent + PSV), and (3) spontaneous breathing without PEEP in air. PCV, APCV1:1, and APCV1:2 were set with P (insp) = 10 cmH(2)O and PEEP = 5 cmH(2)O. BiVent + PSV was set with two levels of CPAP [inspiratory pressure (P (High) = 10 cmH(2)O) and positive end-expiratory pressure (P (Low) = 5 cmH(2)O)] and inspiratory/expiratory times: T (High) = 0.3 s and T (Low) = 0.3 s. PSV was set as follows: 2 cmH(2)O above P (High) and 7 cmH(2)O above P (Low). All rats were mechanically ventilated in air and PEEP = 5 cmH(2)O for 1 h. Assisted ventilation modes led to better functional improvement and less lung injury compared to PCV. APCV1:1 and BiVent + PSV presented similar oxygenation levels, which were higher than in APCV1:2. Bivent + PSV led to less alveolar epithelium injury and lower expression of tumour necrosis factor-alpha, interleukin-6, and type III procollagen. In this experimental ALI model, assisted ventilation modes presented greater beneficial effects on respiratory function and a reduction in lung injury compared to PCV. Among assisted ventilation modes, Bi-Vent + PSV demonstrated better functional results with less lung damage and expression of inflammatory mediators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RAMOS, D. S. C. R. OLIVO. F. D. QUIRINO SANTOS LOPES, A. C. TOLEDO, M. A. MARTINS, R. A. LAZO OSORIO. M. DOLHNIKOFF, W. RIBEIRO, and R. R VIEIRA. Low-Intensity Swimming Training Partially Inhibits Lipopolysaccharide-Induced Acute Lung Injury. Med. Sci. Sports Exerc.. Vol. 42, No. 1, pp. 113-119, 2010. Background: Aerobic exercise-decreases pulmonary inflammation and remodeling in experimental models of allergic asthma. However, the effects of aerobic exercise oil pulmonary inflammation of nonallergic Origin, such as in experimental models of acute long injury induced by lipopolysaccharide (LPS), have not been evaluated. Objective: The present study evaluated file effects of aerobic exercise in a model of LPS-induced acute lung injury. Methods: BALB/c mice were divided into four groups: Control, Aerobic Exercise, LPS, and Aerobic Exercise + LPS. Swimming tests were conducted at baseline and at 3 and 6 wk. Low-Intensity swimming training was performed for 6 wk, four times per week, 60 min per session. Intranasal LPS (1 mg.kg(-1) (60 mu g per mouse)) was instilled 24 It after the last swimming physical test in the LPS and Aerobic Exercise + LPS mice, and the animals were studied 24 It after LPS instillation. Exhaled nitric oxide, respiratory mechanics, total and differential cell Counts in bronchoalveolar lavage, and lung parenchymal inflammation and remodeling were evaluated. Results: LPS instillation resulted in increased levels of exhaled nitric oxide (P < 0.001), higher numbers of neutrophils in file bronchoalveolar lavage (P < 0.001) and in the lung parenchyma (P < 0.001), and decreased lung tissue resistance (P < 0.05) and volume proportion of elastic fibers (P < 0.01) compared with the Control group. Swim training in LPS-instilled animals resulted in significantly lower exhaled nitric oxide levels (P < 0.001) and fewer nelltrophils in the bronchoalveolar lavage (P < 0.001) and the lung parenchyma (P < 0.01) compared with the LPS group. Conclusions: These results Suggest that low-intensity swimming training inhibits lung neutrophilic inflammation, but not remodeling and impaired lung mechanics, in a model of LPS-induced acute lung injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to test the hypothesis that bone marrow mononuclear cell (BMDMC) therapy led an improvement in lung mechanics and histology in endotoxin-induced lung injury. Twenty-four C57BL/6 mice were randomly divided into four groups (n = 6 each). In the acute lung injur;y (ALI) group, Escherichia coli lipopolysaccharide (LPS) was instilled intratracheally (40 mu g, IT), and control (C) mice received saline (0.05 ml, IT). One hour after the administration of saline or LPS, BMDMC (2 x 10(7) cells) was intravenously injected. At day 28, animals were anesthetized and lung mechanics [static elastance (E(st)), resistive (Delta P(1)), and viscoelastic (Delta P(2)) pressures] and histology (light and electron microscopy) were analyzed. Immunogold electron microscopy was used to evaluate if multinucleate cells were type II epithelial cells. BMDMC therapy prevented endotoxin-induced lung inflammation, alveolar collapse, and interstitial edema. In addition, BMDMC administration led to epithelial and endothelial repair with multinucleated type II pneumocytes. These histological changes yielded a reduction in lung E(st), Delta P(1), and Delta P(2) compared to ALI. In the present experimental ALI model, the administration of BMDMC yielded a reduction in the inflammatory process and a repair of epithelium and endothelium, reducing the amount of alveolar collapse, thus leading to an improvement in lung mechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: There are no reports of the systemic human pathology of the novel swine H1N1 influenza (S-OIV) infection. Objectives: The autopsy findings of 21 Brazilian patients with confirmed S-OIV infection are presented. These patients died in the winter of the southern hemisphere 2009 pandemic, with acute respiratory failure. Methods: Lung tissue was submitted to virologic and bacteriologic analysis with real-time reverse transcriptase polymerase chain reaction and electron microscopy. Expression of toll-like receptor (TLR)-3, IFN-gamma, tumor necrosis factor-alpha, CD8(+) T cells and granzyme B(+) cells in the lungs was investigated by immunohistochemistry. Measurements and Main Results: Patients were aged from 1 to 68 years (72% between 30 and 59 yr) and 12 were male. Sixteen patients had preexisting medical conditions. Diff use alveolar damage was present in 20 individuals. in six patients, diffuse alveolar damage was associated with necrotizing bronchiolitis and in five with extensive hemorrhage. There was also a cytopathic effect in the bronchial and alveolar epithelial cells, as well as necrosis, epithelial hyperplasia, and squamous metaplasia of the large airways. There was marked expression of TLR-3 and IFN-gamma and a large number of CD8(+) T cell sand granzyme B(+) cells within the lung tissue. Changes in other organs were mainly secondary to multiple organ failure. Conclusions: Autopsies have shown that the main pathological changes associated with S-OIV infection are localized to the lungs, where three distinct histological patterns can be identified. We also show evidence of ongoing pulmonary aberrant immune response. Our results reinforce the usefulness of autopsy in increasing the understanding of the novel human influenza A (H1N1) infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of obesity on the inflammatory process has been described in asthma, however little is known about the influence of diet-induced obesity on lung remodeling. For this purpose, 56 recently weaned A/J mice were randomly divided into 2 groups. In the C group, mice were fed a standard chow diet, while OB animals received isocaloric high-fat diet to reach 1.5 of the mean body weight of C. After 12 weeks, each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, and the number of eosinophils in bronchoalveolar lavage fluid were higher in OB-OVA than C-OVA. In conclusion, diet-induced obesity enhanced lung remodeling resulting in higher airway responsiveness in the present experimental chronic allergic asthma. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Airway bypass is a bronchoscopic lung-volume reduction procedure for emphysema whereby transbronchial passages into the lung are created to release trapped air, supported with paclitaxel-coated stents to ease the mechanics of breathing. The aim of the EASE (Exhale airway stents for emphysema) trial was to evaluate safety and efficacy of airway bypass in people with severe homogeneous emphysema. Methods We undertook a randomised, double-blind, sham-controlled study in 38 specialist respiratory centres worldwide. We recruited 315 patients who had severe hyperinflation (ratio of residual volume [RV] to total lung capacity of >= 0.65). By computer using a random number generator, we randomly allocated participants (in a 2:1 ratio) to either airway bypass (n=208) or sham control (107). We divided investigators into team A (masked), who completed pre-procedure and post-procedure assessments, and team B (unmasked), who only did bronchoscopies without further interaction with patients. Participants were followed up for 12 months. The 6-month co-primary efficacy endpoint required 12% or greater improvement in forced vital capacity (FVC) and 1 point or greater decrease in the modified Medical Research Council dyspnoea score from baseline. The composite primary safety endpoint incorporated five severe adverse events. We did Bayesian analysis to show the posterior probability that airway bypass was superior to sham control (success threshold, 0.965). Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00391612. Findings All recruited patients were included in the analysis. At 6 months, no difference between treatment arms was noted with respect to the co-primary efficacy endpoint (30 of 208 for airway bypass vs 12 of 107 for sham control; posterior probability 0.749, below the Bayesian success threshold of 0.965). The 6-month composite primary safety endpoint was 14.4% (30 of 208) for airway bypass versus 11.2% (12 of 107) for sham control (judged non-inferior, with a posterior probability of 1.00 [Bayesian success threshold >0.95]). Interpretation Although our findings showed safety and transient improvements, no sustainable benefit was recorded with airway bypass in patients with severe homogeneous emphysema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The functional haemodynamic variables pulse pressure variation (PPV), stroke volume variation (SVV), and systolic pressure variation (SPV) are widely used to assess haemodynamic status. However, it is not known how these perform during acute lung injury (ALI). This study evaluated the effects of different ventilatory strategies on haemodynamic parameters in pigs with ALI during normovolaemia and hypovolaemia. Methods. Eight anaesthetized Agroceres pigs [40 (1.9) kg] were instrumented with pulmonary artery, PiCCO, and arterial catheters and ventilated. Three ventilatory settings were randomly assigned for 10 min each: tidal volume (VT) 15 ml kg(-1) and PEEP 5 cm H(2)O, VT 8 ml kg(-1) and PEEP 13 cm H(2)O, or VT 6 ml kg(-1) and PEEP 13 cm H(2)O. Data were collected at each setting at baseline, after ALI (lung lavage+Tween 1.5%), and ALI with hypovolaemia (haemorrhage to 30% of estimated blood volume). Results. At baseline, high VT increased PPV, SVV, and SPV (P < 0.05 for all). During ALI, high VT significantly increased PPV and SVV [(P = 0.002 and P = 0.008) respectively.]. After ALI with hypovolaemia, ventilation at VT 6 ml kg(-1) and PEEP 13 cm H(2)O decreased the accuracy of functional haemodynamic variables to predict hypovolaemia, with the exception of PPV (area under the curve 0.875). The parameters obtained by PiCCO were less influenced by ventilatory changes. Conclusions. VT is the ventilatory parameter which influences functional haemodynamics the most. During ventilation with low VT and high PEEP, most functional variables are less able to accurately predict hypovolaemia secondary to haemorrhage, with the exception of PPV.