973 resultados para local search
Resumo:
The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present a metaheuristic approach which combines constructive heuristics and local searches based on sampling with path relinking. Its effectiveness is demonstrated by an application to the problem of allocating switches in electrical distribution networks to improve their reliability. Our approach also treats the service restoration problem, which has to be solved as a subproblem, to evaluate the reliability benefit of a given switch allocation proposal. Comparisons with other metaheuristics and with a branch-and-bound procedure evaluate its performance. © 2012 Published by Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
A Dissertação trata sobre a política salarial dos professores municipalizados do município de Tucuruí do Estado do Pará. Objetiva avaliar a política salarial dos professores no contexto da municipalização do ensino e tenta contribuir com a avaliação da política educacional no Pará, no período entre 1997 a 2008. Procuramos analisar dinamicamente, a política salarial face ao caráter da política educacional do programa de “descentralização”, desenvolvido nas reformas do Estado brasileiro, executado pelo Ministério da Educação, desde o governo de Fernando Henrique Cardoso. Assim, a investigação atentou para modelos de políticas de financiamento de orientação nacional concentrada no MEC. O estudo aponta contradições na relação do projeto nacional de municipalização com a gestão local em que a política salarial dos professores sofre perdas na remuneração. A questão norteadora do estudo acontece frente à instigação da existência de alterações nos salários dos professores a partir do momento que foram cedidos da rede estadual para o município de Tucurui, local da pesquisa. A partir deste local, analisamos documentos, fatos cotidianos da escola; realizamos entrevistas com os sujeitos da pesquisa como os professores, técnicos, secretário de educação e indicalistas do SINTEPP. Então, o estudo indicou que a política salarial dos professores sofreu alterações; progressiva extinção destes da folha ativa de pagamento da SEDUC e marcas de ilegalidade frente ao ato de cedência ao município que nos fizeram observar um modo imposto na condução da política municipalista no Pará. No contexto desta política avaliamos haver ajustes ideológicos de cunho conservador e neoliberal concretizados nos acordos entre o governo do Estado e a prefeitura.
Resumo:
Em muitos problemas de otimização há dificuldades em alcançar um resultado ótimo ou mesmo um resultado próximo ao valor ótimo em um tempo viável, principalmente quando se trabalha em grande escala. Por isso muitos desses problemas são abordados por heurísticas ou metaheurísticas que executam buscas por melhores soluções dentro do espaço de busca definido. Dentro da computação natural estão os Algoritmos Culturais e os Algoritmos Genéticos, que são considerados metaheurísticas evolutivas que se complementam devido ao mecanismo dual de herança cultura/genética. A proposta do presente trabalho é estudar e utilizar tais mecanismos acrescentando tanto heurísticas de busca local como multipopulações aplicados em problemas de otimização combinatória (caixeiro viajante e mochila), funções multimodais e em problemas restritos. Serão executados alguns experimentos para efetuar uma avaliação em relação ao desempenho desses mecanismos híbridos e multipopulacionais com outros mecanismos dispostos na literatura de acordo com cada problema de otimização aqui abordado.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This work deals with the sequencing of Multi-Mixed-Model Assembly Lines in a lean manufacturing environment, where an operational structure where several kanbans support several mixed-model assembly lines, so that all assembly lines can receive parts or sub-assemblies from all suppliers. To optimize this system, the sequencing seeks to minimize the distance between the real consumption and the constant ideal consumption of parts or subassemblies, thereby reducing the scaling of kanbans and intermediate stocks. To solve the sequencing problems, the method Clustering Search was applied along with the metaheuristics Variable Neighborhood Search, Simulation Annealing and Iterative Local Search. Instances from the literature and generated instances were tested, thus allowing comparing the methods to each other and with other methods presented in the literature. The performance of the Clustering Search with Iterated Local Search stands out by the quality and robustness of their solutions, and mainly for its efficiency, whereas it converges to better results at a lower computational cost
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents a mathematical model adapted from literature for the crop rotation problem with demand constraints (CRP-D). The main aim of the present work is to study metaheuristics and their performance in a real context. The proposed algorithms for solution of the CRP-D are a genetic algorithm, a simulated annealing and hybrid approaches: a genetic algorithm with simulated annealing and a genetic algorithm with local search algorithm. A new constructive heuristic was also developed to provide initial solutions for the metaheuristics. Computational experiments were performed using a real planting area and semi-randomly generated instances created by varying the number, positions and dimensions of the lots. The computational results showed that these algorithms determined good feasible solutions in a short computing time as compared with the time spent to get optimal solutions, thus proving their efficacy for dealing with this practical application of the CRP-D.
Resumo:
This article describes a real-world production planning and scheduling problem occurring at an integrated pulp and paper mill (P&P) which manufactures paper for cardboard out of produced pulp. During the cooking of wood chips in the digester, two by-products are produced: the pulp itself (virgin fibers) and the waste stream known as black liquor. The former is then mixed with recycled fibers and processed in a paper machine. Here, due to significant sequence-dependent setups in paper type changeovers, sizing and sequencing of lots have to be made simultaneously in order to efficiently use capacity. The latter is converted into electrical energy using a set of evaporators, recovery boilers and counter-pressure turbines. The planning challenge is then to synchronize the material flow as it moves through the pulp and paper mills, and energy plant, maximizing customer demand (as backlogging is allowed), and minimizing operation costs. Due to the intensive capital feature of P&P, the output of the digester must be maximized. As the production bottleneck is not fixed, to tackle this problem we propose a new model that integrates the critical production units associated to the pulp and paper mills, and energy plant for the first time. Simple stochastic mixed integer programming based local search heuristics are developed to obtain good feasible solutions for the problem. The benefits of integrating the three stages are discussed. The proposed approaches are tested on real-world data. Our work may help P&P companies to increase their competitiveness and reactiveness in dealing with demand pattern oscillations. (C) 2012 Elsevier Ltd. All rights reserved.