986 resultados para lipid storage


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the effects of slow infiltration of oxygen on microbial communities in refrigerated legacy samples from ocean drilling expeditions. Storage was in heat-sealed, laminated foil bags with a N2 headspace for geomicrobiological studies. Analysis of microbial lipids suggests that Bacteria were barely detectable in situ but increased remarkably during storage. Detailed molecular examination of a methane-rich sediment horizon showed that refrigeration triggered selective growth of ANME-2 archaea and a drastic change in the bacterial community. Subsequent enrichment targeting methanogens yielded exclusively methylotrophs, which were probably selected for by high sulfate levels caused by oxidation of reduced sulfur species. We provide recommendations for sample storage in future ocean drilling expeditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monolayer tapetum cells of the maturing flowers of Brassica napus contain abundant subcellular globuli-filled plastids and special lipid particles, both enriched with lipids that are supposed to be discharged and deposited onto the surface of adjacent maturing pollen. We separated the two organelles by flotation density gradient centrifugation and identified them by electron microscopy. The globuli-filled plastids had a morphology similar to those described in other plant species and tissues. They had an equilibrium density of 1.02 g/cm3 and contained neutral esters and unique polypeptides. The lipid particles contained patches of osmiophilic materials situated among densely packed vesicles and did not have an enclosing membrane. They exhibited osmotic properties, presumably exerted by the individual vesicles. They had an equilibrium density of 1.05 g/cm3 and possessed triacylglycerols and unique polypeptides. Several of these polypeptides were identified, by their N-terminal sequences or antibody cross-reactivity, as oleosins, proteins known to be associated with seed storage oil bodies. The morphological and biochemical characteristics of the lipid particles indicate that they are novel organelles in eukaryotes that have not been previously isolated and studied. After lysis of the tapetum cells at a late stage of floral development, only the major plastid neutral ester was recovered, whereas the other abundant lipids and proteins of the two tapetum organelles were present in fragmented forms or absent on the pollen surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glyoxylate cycle is regarded as essential for postgerminative growth and seedling establishment in oilseed plants. We have identified two allelic Arabidopsis mutants, icl-1 and icl-2, which lack the glyoxylate cycle because of the absence of the key enzyme isocitrate lyase. These mutants demonstrate that the glyoxylate cycle is not essential for germination. Furthermore, photosynthesis can compensate for the absence of the glyoxylate cycle during postgerminative growth, and only when light intensity or day length is decreased does seedling establishment become compromised. The provision of exogenous sugars can overcome this growth deficiency. The icl mutants also demonstrate that the glyoxylate cycle is important for seedling survival and recovery after prolonged dark conditions that approximate growth in nature. Surprisingly, despite their inability to catalyze the net conversion of acetate to carbohydrate, mutant seedlings are able to break down storage lipids. Results suggest that lipids can be used as a source of carbon for respiration in germinating oilseeds and that products of fatty acid catabolism can pass from the peroxisome to the mitochondrion independently of the glyoxylate cycle. However, an additional anaplerotic source of carbon is required for lipid breakdown and seedling establishment. This source can be provided by the glyoxylate cycle or, in its absence, by exogenous sucrose or photosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cav(DGV)) to study LB formation and to examine its effect on LB function. We now show that the cav(DGV) mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oligomeric lipid raft-associated integral protein stomatin normally localizes to the plasma membrane and the late endosomal compartment. Similar to the caveolins, it is targeted to lipid bodies (LBs) on overexpression. Endogenous stomatin also associates with LBs to a small extent. Green fluorescent protein-tagged stomatin (StomGFP) and the dominant-negative caveolin-3 mutant DGV(cav3)(HA) occupy distinct domains on LB surfaces but eventually intermix. Studies of StomGFP deletion mutants reveal that the region for membrane association but not oligomerization and raft association is essential for LB targeting. Blocking protein synthesis leads to the redistribution of StomGFP from LBs to LysoTracker-positive vesicles indicating a connection with the late endosomal/ lysosomal pathway. Live microscopy of StomGFP reveals multiple interactions between LBs and microtubule-associated vesicles possibly representing signaling events and/or the exchange of cargo. Proteomic analysis of isolated LBs identifies adipophilin and TIP47, various lipid-specific enzymes, cytoskeletal components, chaperones, Ras-related proteins, protein kinase D2, and other regulatory proteins. The association of the Rab proteins 1, 6, 7, 10, and 18 with LBs indicates various connections to other compartments. Our data suggest that LBs are not only involved in the storage of lipids but also participate actively in the cellular signaling network and the homeostasis of lipids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we identify inosine-5' monophosphate dehydrogenase (IMPDH), a key enzyme in de novo guanine nucleotide biosynthesis, as a novel lipid body-associated protein. To identify new targets of insulin we performed a comprehensive 2-DE analysis of P-32-labelled proteins isolated from 3T3-L1 adipocytes (Hill et al. J Biol Chem 2000; 275: 24313-24320). IMPDH was identified by liquid chromatography/tandem mass spectrometry as a protein which was phosphorylated in a phosphatidylinositol (PI) 3-kinase-dependent manner upon insulin treatment. Although insulin had no significant effect on IMPDH activity, we observed translocation of IMPDH to lipid bodies following insulin treatment. Induction of lipid body formation with oleic acid promoted dramatic redistribution of IMPDH to lipid bodies, which appeared to be in contact with the endoplasmic reticulum, the site of lipid body synthesis and recycling. Inhibition of PI 3-kinase blocked insulin- and oleate-induced translocation of IMPDH and reduced oleate-induced lipid accumulation. However, we found no evidence of oleate-induced IMPDH phosphorylation, suggesting phosphorylation and translocation may not be coupled events. These data support a role for IMPDH in the dynamic regulation of lipid bodies and fatty acid metabolism and regulation of its activity by subcellular redistribution in response to extracellular factors that modify lipid metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rab GTPases are crucial regulators of membrane traffic. Here we have examined a possible association of Rab proteins with lipid droplets (LDs), neutral lipid-containing organelles surrounded by a phospholipid monolayer, also known as lipid bodies, which have been traditionally considered relatively inert storage organelles. Although we found close apposition between LDs and endosomal compartments labeled by expressed Rab5, Rab7, or Rab11 constructs, there was no detectable labeling of the LD surface itself by these Rab proteins. In contrast, GFP-Rab18 localized to LDs and immunoelectron microscopy showed direct association with the monolayer surface. Green fluorescent protein (GFP)-Rab18-labeled LDs underwent oscillatory movements in a localized area as well as sporadic, rapid, saltatory movements both in the periphery of the cell and toward the perinuclear region. In both adipocytes and non-adipocyte cell lines Rab18 localized to a subset of LDs. To gain insights into this specific localization, Rab18 was co-expressed with Cav3(DGV), a truncation mutant of caveolin-3 shown to inhibit the catabolism and motility of lipid droplets. GFP-Rab18 and mRFP-Cav3(DGV) labeled mutually exclusive subpopulations of LDs. Moreover, in 3T3-L1 adipocytes, stimulation of lipolysis increased the localization of Rab18 to LDs, an effect reversed by beta-adrenergic antagonists. These results show that a Rab protein localizes directly to the monolayer surface of LDs. In addition, association with the LD surface was increased following stimulation of lipolysis and inhibited by a caveolin mutant suggesting that recruitment of Rab18 is regulated by the metabolic state of individual LDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chicken breast from nine products and from the following production regimes: conventional (chilled and frozen), organic and free range, were analysed for fatty acid composition of total lipids, preventative and chain breaking antioxidant contents and lipid oxidation during 5 days of sub-ambient storage following purchase. Total lipids were extracted with an optimal amount of a cold chloroform methanol solvent. Lipid compositions varied, but there were differences between conventional and organic products in their contents of total polyunsaturated fatty acids and n-3 and n-6 fatty acids and n-6:n-3 ratio. Of the antioxidants, a-tocopherol content was inversely correlated with lipid oxidation. The antioxidant enzyme activities of catalase, glutathione peroxidase and glutathione reductase varied between products. Modelling with partial least squares regression showed no overall relationship between total antioxidants and lipid data, but certain individual antioxidants showed a relationship with specific lipid fractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt use in meat products is changing. Consumers desire sea salt which may also contain trace metals and the government is demanding a reduction in sodium. Therefore a need exists to understand how varying impurity levels in salt affect meat quality. This study evaluated the effects of various salt preparations on lipid oxidation, sensory characteristics, protein extractability, and bind strength of ground turkey and pork. This study was a completely randomized design with 5 treatment groups and 6 replications in 2 species. Ground, turkey and pork meat was formulated into one hundred and fifty gram patties with sodium chloride (1%) containing varying amounts of metal impurities (copper, iron, and manganese). Samples were randomly assigned to frozen storage periods of 0, 3, 6, and 9 weeks. After storage, samples were packaged in PVC overwrap and stored under retail display for 5 days. Samples were evaluated for proximate analysis to ensure the fat content was similar for all of the starting material.Thiobarbituric acid reactive substances (TBARS) were determined on raw and cooked samples to evaluate lipid oxidation. A trained six member sensory panel evaluated the samples at each storage period for saltiness, off flavor, and oxidized odor. Break strength was conducted using a Texture Analyzer and compared with salt soluble proteins (increasing salt concentrations) to evaluate protein extractability characteristics. Statistical analyses were conducted using the MIXED procedure of SAS within repeated measures over time where appropriate. No significant differences were observed among the salt treatments for raw and cooked TBARS when the control group was removed (P>0.05). Sensory panelists detected increased levels of off flavor and oxidized odor over the entire storage duration. Less force was required to break the patties from the control group when compared with the salt treatments (P<0.05). As salt concentration increased salt-soluble protein extraction increased, but there was no effect of salt type. Overall, no meaningful statistical differences among the various salt treatments were observed for all of the parameters evaluated for turkey and pork. Salt at a 1% inclusion rate containing varying levels of copper, iron, and manganese impurities in ground turkey thigh meat and ground pork served as a prooxidant. However, if a meat processor uses a 1% inclusion rate of salt in turkey and pork regardless of impurities included, it is unlikely that differences in shelf life or protein functionality would be observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rising levels of CO2 in the atmosphere, low-emission technologies with carbon dioxide capture and storage (CCS) provide one option for transforming the global energy infrastructure into a more environmentally, climate sustainable system. However, like many technology innovations, there is a social risk to the acceptance of CCS. This article presents the findings of an engagement process using facilitated workshops conducted in two communities in rural Queensland, Australia, where a demonstration project for IGCC with CCS has been announced. The findings demonstrate that workshop participants were concerned about climate change and wanted leadership from government and industry to address the issue. After the workshops, participants reported increased knowledge and more positive attitudes towards CCS, expressing support for the demonstration project to continue in their local area. The process developed is one that could be utilized around the world to successfully engage communities on the low carbon emission technology options.