979 resultados para ion mobility
Resumo:
Hydrogel polymers are used for the manufacture of soft (or disposable) contact lenses worldwide today, but have a tendency to dehydrate on the eye. In vitro methods that can probe the potential for a given hydrogel polymer to dehydrate in vivo are much sought after. Nuclear magnetic resonance (NMR) has been shown to be effective in characterising water mobility and binding in similar systems (Barbieri, Quaglia et al., 1998, Larsen, Huff et al., 1990, Peschier, Bouwstra et al., 1993), predominantly through measurement of the spin-lattice relaxation time (T1), the spinspin relaxation time (T2) and the water diffusion coefficient (D). The aim of this work was to use NMR to quantify the molecular behaviour of water in a series of commercially available contact lens hydrogels, and relate these measurements to the binding and mobility of the water, and ultimately the potential for the hydrogel to dehydrate. As a preliminary study, in vitro evaporation rates were measured for a set of commercial contact lens hydrogels. Following this, comprehensive measurement of the temperature and water content dependencies of T1, T2 and D was performed for a series of commercial hydrogels that spanned the spectrum of equilibrium water content (EWC) and common compositions of contact lenses that are manufactured today. To quantify material differences, the data were then modelled based on theory that had been used for similar systems in the literature (Walker, Balmer et al., 1989, Hills, Takacs et al., 1989). The differences were related to differences in water binding and mobility. The evaporative results suggested that the EWC of the material was important in determining a material's potential to dehydrate in this way. Similarly, the NMR water self-diffusion coefficient was also found to be largely (if not wholly) determined by the WC. A specific binding model confirmed that the we was the dominant factor in determining the diffusive behaviour, but also suggested that subtle differences existed between the materials used, based on their equilibrium we (EWC). However, an alternative modified free volume model suggested that only the current water content of the material was important in determining the diffusive behaviour, and not the equilibrium water content. It was shown that T2 relaxation was dominated by chemical exchange between water and exchangeable polymer protons for materials that contained exchangeable polymer protons. The data was analysed using a proton exchange model, and the results were again reasonably correlated with EWC. Specifically, it was found that the average water mobility increased with increasing EWe approaching that of free water. The T1 relaxation was also shown to be reasonably well described by the same model. The main conclusion that can be drawn from this work is that the hydrogel EWe is an important parameter, which largely determines the behaviour of water in the gel. Higher EWe results in a hydrogel with water that behaves more like bulk water on average, or is less strongly 'bound' on average, compared with a lower EWe material. Based on the set of materials used, significant differences due to composition (for materials of the same or similar water content) could not be found. Similar studies could be used in the future to highlight hydrogels that deviate significantly from this 'average' behaviour, and may therefore have the least/greatest potential to dehydrate on the eye.
Resumo:
Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm-3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm-3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.
Resumo:
Purpose. To investigate evidence-based visual field size criteria for referral of low-vision (LV) patients for mobility rehabilitation. Methods. One hundred and nine participants with LV and 41 age-matched participants with normal sight (NS) were recruited. The LV group was heterogeneous with diverse causes of visual impairment. We measured binocular kinetic visual fields with the Humphrey Field Analyzer and mobility performance on an obstacle-rich, indoor course. Mobility was assessed as percent preferred walking speed (PPWS) and number of obstacle-contact errors. The weighted kappa coefficient of association (κr) was used to discriminate LV participants with both unsafe and inefficient mobility from those with adequate mobility on the basis of their visual field size for the full sample and for subgroups according to type of visual field loss and whether or not the participants had previously received orientation and mobility training. Results. LV participants with both PPWS <38% and errors >6 on our course were classified as having inadequate (inefficient and unsafe) mobility compared with NS participants. Mobility appeared to be first compromised when the visual field was less than about 1.2 steradians (sr; solid angle of a circular visual field of about 70° diameter). Visual fields <0.23 and 0.63 sr (31 to 52° diameter) discriminated patients with at-risk mobility for the full sample and across the two subgroups. A visual field of 0.05 sr (15° diameter) discriminated those with critical mobility. Conclusions. Our study suggests that: practitioners should be alert to potential mobility difficulties when the visual field is less than about 1.2 sr (70° diameter); assessment for mobility rehabilitation may be warranted when the visual field is constricted to about 0.23 to 0.63 sr (31 to 52° diameter) depending on the nature of their visual field loss and previous history (at risk); and mobility rehabilitation should be conducted before the visual field is constricted to 0.05 sr (15° diameter; critical).
Resumo:
Wireless Mobility Usage: A Preliminary Qualitative Study for Management in Two Australian University Settings, Neville Meyers, Heather Gray, Greg Hearn, Louis Sanzogni, and Sandra Lawrence.
Resumo:
Current trends in workforce development indicate the movement of workers within and across occupations to be the norm. In 2009, only one in three vocational education and training (VET) graduates in Australia ended up working in an occupation for which they were trained. This implies that VET enhances the employability of its graduates by equipping them with the knowledge and competencies to work in different occupations and sectors. This paper presents findings from a Government-funded study that examined the occupational mobility of selected associate professional and trades occupations within the Aged Care, Automotive and Civil Construction sectors in Queensland. The study surveyed enrolled nurses and related workers, motor mechanics and civil construction workers to analyse their patterns of occupational mobility, future work intentions, reasons for taking and leaving work, and the factors influencing them to leave or remain in their occupations. This paper also discusses the implications of findings for the training of workers in these sectors and more generally.
Resumo:
The purpose of this book is to show why we should be concerned about virtual communities for people with physical, or more particularly mobility, impairments. The well-being model through a virtual community introduced here goes towards advancing the work begun by others, by adding for example a socio-political component. The model presented here provides practical insights into how strategic community investment can support people with disabilities and their families. Virtual communities are about engagement, quality of life and support, not just about information. The role of information technology in building and raising community capacity and social capital in socially and economically disadvantaged communities is also examined. Practical insights are offered into community support for people with chronic illness.
Resumo:
Traditionally, transport disadvantage has been identified using accessibility analysis although the effectiveness of the accessibility planning approach to improving access to goods and services is not known. This paper undertakes a comparative assessment of measures of mobility, accessibility, and participation used to identify transport disadvantage using the concept of activity spaces. A 7 day activity-travel diary data for 89 individuals was collected from two case study areas located in rural Northern Ireland. A spatial analysis was conducted to select the case study areas using criteria derived from the literature. The criteria are related to the levels of area accessibility and area mobility which are known to influence the nature of transport disadvantage. Using the activity-travel diary data individuals weekly as well as day to day variations in activity-travel patterns were visualised. A model was developed using the ArcGIS ModelBuilder tool and was run to derive scores related to individual levels of mobility, accessibility, and participation in activities from the geovisualisation. Using these scores a multiple regression analysis was conducted to identify patterns of transport disadvantage. This study found a positive association between mobility and accessibility, between mobility and participation, and between accessibility and participation in activities. However, area accessibility and area mobility were found to have little impact on individual mobility, accessibility, and participation in activities. Income vis-àvis ´ car-ownership was found to have a significant impact on individual levels of mobility, and accessibility; whereas participation in activities were found to be a function of individual levels of income and their occupational status.
Resumo:
The role of ions in the production of atmospheric particles has gained wide interest due to their profound impact on climate. Away from anthropogenic sources, molecules are ionized by alpha radiation from radon exhaled from the ground and cosmic gamma radiation from space. These molecular ions quickly form into ‘cluster ions’, typically smaller than about 1.5 nm. Using our measurements and the published literature, we present evidence to show that cluster ion concentrations in forest areas are consistently higher than outside. Since alpha radiation cannot penetrate more than a few centimetres of soil, radon present deep in the ground cannot directly contribute to the measured cluster ion concentrations. We propose an additional mechanism whereby radon, which is water soluble, is brought up by trees and plants through the uptake of groundwater and released into the atmosphere by transpiration. We estimate that, in a forest comprising eucalyptus trees spaced 4m apart, approximately 28% of the radon in the air may be released by transpiration. Considering that 24% of the earth’s land area is still covered in forests; these findings have potentially important implications for atmospheric aerosol formation and climate.