964 resultados para intracellular signaling


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chromosome 5q22-33 is a region where studies have repeatedly found evidence for linkage to schizophrenia. In this report, we took a stepwise approach to systematically map this region in the Irish Study of High Density Schizophrenia Families (ISHDSF, 267 families, 1337 subjects) sample. We typed 289 SNPs in the critical interval of 8 million basepairs and found a 758 kb interval coding for the SPEC2/PDZ-GEF2/ACSL6 genes to be associated with the disease. Using sex and genotype-conditioned transmission disequilibrium test analyses, we found that 19 of the 24 typed markers were associated with the disease and the associations were sex-specific. We replicated these findings with an Irish case-control sample (657 cases and 414 controls), an Irish parent-proband trio sample (187 families, 564 subjects), a German nuclear family sample (211 families, 751 subjects) and a Pittsburgh nuclear family sample (247 families, 729 subjects). In all four samples, we replicated the sex-specific associations at the levels of both individual markers and haplotypes using sex- and genotype-conditioned analyses. Three risk haplotypes were identified in the five samples, and each haplotype was found in at least two samples. Consistent with the discovery of multiple estrogen-response elements in this region, our data showed that the impact of these haplotypes on risk for schizophrenia differed in males and females. From these data, we concluded that haplotypes underlying the SPEC2/PDZ-GEF2/ACSL6 region are associated with schizophrenia. However, due to the extended high LD in this region, we were unable to distinguish whether the association signals came from one or more of these genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The introduction of microarray technology to the scientific and medical communities has dramatically changed the way in which we now address basic biomedical questions. Expression profiling using microarrays facilitates an experimental approach where alterations in the transcript level of entire transcriptomes can be simultaneously assayed in response to defined stimuli. We have used microarray analysis to identify downstream transcriptional targets of the BRCA1 (Breast Cancer 1) tumour-suppressor gene as a means of defining its function. BRCA1 has been implicated in the predisposition to early onset breast and ovarian cancer and while its exact function remains to be defined, roles in DNA repair, cell-cycle control and transcriptional regulation have been implied. In the current study we have generated cell lines with tetracycline-regulated, inducible expression of BRCA1 as a tool to identify genes, which might represent important effectors of BRCA1 function. Oligonucleotide array-based expression profiling identified a number of genes that were upregulated at various times following inducible expression of BRCA1 including the DNA damage-responsive gene GADD45 (Growth Arrest after DNA Damage). Identified targets were confirmed by Northern blot analysis and their functional significance as BRCA1 targets examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The breast cancer susceptibility gene BRCA1 encodes a protein implicated in the cellular response to DNA damage, with postulated roles in homologous recombination as well as transcriptional regulation. To identify downstream target genes, we established cell lines with tightly regulated inducible expression of BRCA1. High-density oligonucleotide arrays were used to analyze gene expression profiles at various times following BRCA1 induction. A major BRCA1 target is the DNA damage-responsive gene GADD45. Induction of BRCA1 triggers apoptosis through activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), a signaling pathway potentially linked to GADD45 gene family members. The p53-independent induction of GADD45 by BRCA1 and its activation of JNK/SAPK suggest a pathway for BRCA1-induced apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensing of foreign agents by the innate and adaptive immune system triggers complex signal transduction cascades that culminate in expression of gene patterns that facilitate host protection from the invading agent. Post-translational modification of intracellular signaling proteins in these pathways is a key regulatory mechanism with ubiquitination being one of the important processes that controls levels and activities of signaling molecules. E3 ubiquitin ligases are the determining enzymes in dictating the ubiquitination status of individual proteins. Among these hundred E3 ubiquitin ligases are a family of Pellino proteins that are emerging to be important players in immunity and beyond. Herein, we review the roles of the Pellino E3 ubiquitin ligases in innate and adaptive immunity. We discuss their early discovery and characterization and how this has been aided by the highly conserved nature of innate immune signaling across evolution. We describe the molecular roles of Pellino proteins in immune signaling with particular emphasis on their involvement in pathogen recognition receptor (PRR) signaling. The growing appreciation of the importance of Pellino proteins in a wide range of immune-mediated diseases are also evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clathrin-mediated endocytosis, the major pathway for ligand internalization into eukaryotic cells, is thought to be initiated by the clustering of clathrin and adaptors around receptors destined for internalization. However, here we report that the membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCHo1/2) were required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. Changes in FCHo1/2 expression levels correlated directly with numbers of CCV budding events, ligand endocytosis, and synaptic vesicle marker recycling. FCHo1/2 proteins bound specifically to the plasma membrane and recruited the scaffold proteins eps15 and intersectin, which in turn engaged the adaptor complex AP2. The FCHo F-BAR membrane-bending activity was required, leading to the proposal that FCHo1/2 sculpt the initial bud site and recruit the clathrin machinery for CCV formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the activation of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca2+ indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise of a conserved innate immune system in B. azoricus. Such system is comparable to other Bivalves and involves the participation of cellular and humoral components. © 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphatidylserine (PS) is a member of the class of phospholipids, and is distributed among all cells of mammalians, playing important roles in diverse biological processes, including blood clotting and apoptosis. When externalized, PS is a ligand that is recognized on apoptotic cells. It has been considered that before externalization PS is oxidized and oxPS enhance the recognition by macrophages receptors, however the knowledge about oxidation of PS is still limited. PS, like others phospholipids, has two fatty acyl chains and one polar head group, in this case is the amino acid serine. The modifications in PS structure can occur by oxidation of the unsaturated fatty acyl chains and by glycation of the polar head group, due to free amine group, thus increasing the susceptibility to oxidative events. The main goal of this work was to characterize and identify oxidized and glycoxidized PS, contributing to the knowledge of the biological role of oxidation products of PS, as well as of glycated PS, in immune and inflammatory processes. To achieve this goal, PS standards (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho- L-serine (POPS), 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), 1- palmitoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine (PLPS) and 1-palmitoyl-2- arachidonoyl-sn-glycero-3-phospho-L-serine (PAPS)) and glycated PS (PAPS and POPS) were induced to oxidize in model systems, using different oxidant reagents: HO• and 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) . The detailed structural characterization of the oxidative products was performed by ESI-MS and MS/MS coupled to separation techniques such as off line TLC-MS and on line LC-MS, in order to obtained better characterization of the larger number of PS and glycated PS oxidation products. The results obtained in this work allowed to identify several oxidation products of PS and glycated PS with modifications in unsaturated fatty acyl chain. Also, oxidation products formed due to structural changes in the serine polar head with formation of terminal acetamide, terminal hydroperoxyacetaldehyde.and terminal acetic acid (glycerophosphacetic acid, GPAA) were identified. The mass spectrometric specific fragmentation pathway of each type of oxidation product was determined using different mass spectrometry approaches. Based on the identified fragmentation pathways, targeted lipidomic analysis was performed to detect oxidation products modified in serine polar head in HaCaT cell line treated with AAPH. The GPAA was detected in HaCaT cells treated with AAPH to induce oxidative stress, thus confirming that modifications in PS polar head is possible to occur in biological systems. Furthermore, it was found that glycated PS species are more prone to oxidative modifications when compared with non glycated PS. During oxidation of glycated PS, besides the oxidation in acyl chains, new oxidation products due to oxidation of the glucose moiety were identified, including PS advanced glycation end products (PSAGES). To investigate if UVA oxidative stress exerted changes in the lipidome of melanoma cell lines, particularly in PS profile, a lipidomic analysis was performed. The lipid profile was obtained using HILIC-LC-MS and GC-MS analysis of the total lipid extracts obtained from human melanoma cell line (SKMEL- 28) after UVA irradiation at 0, 2 and 24 hours. The results did not showed significant differences in PS content. At molecular level, only PS (18:0:18:1) decreased at the moment of irradiation. The most significant changes in phospholipids content occurred in phosphatidylcholines (PC) and phosphatidylinositol (PI) classes, with an increase of mono-unsaturated fatty acid (MUFA), similarly as observed for the fatty acid analysis. Overall, these data indicate that the observed membrane lipid changes associated with lipogenesis after UVA exposure may be correlated with malignant transformations associated with cancer development and progression. Despite of UVA radiation is associated with oxidative damage, in this work was not possible observe oxidation phospholipids. The anti/pro-inflammatory properties of the oxidized PLPS (oxPLPS) versus non-oxidized PLPS were tested on LPS stimulated RAW 264.7 macrophages. The modulation of intracellular signaling pathways such as NF-kB and MAPK cascades by oxPLPS and PS was also examined in this study. The results obtained from evaluation of anti/pro-inflammatory properties showed that neither PLPS or oxPLPS species activated the macrophages. Moreover only oxidized PLS were found to significantly inhibit NO production and iNOS and il1β gene transcription induced by LPS. The analysis at molecular level showed that this was the result of the attenuation of LPS-induced c-Jun-N-terminal kinase (JNK) and p65 NF-kB nuclear translocation. Overall these data suggest that oxPLPS, but not native PLPS, mitigates pro-inflammatory signaling in macrophages, contributing to containment of inflammation during apoptotic cell engulfment. The results obtained in this work provides new information on the modifications of PS, facilitating the identification of oxidized species in complex samples, namely under physiopathologic conditions and also contributes to a better understanding of the role of oxPS and PS in the inflammatory response, in the apoptotic process and other biological functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death (PCD) of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell to cell factors acting at the local level generating the full defense reaction has remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naïve tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis thaliana leaf tissue undergoing HR, and that this compound induces cell death as well as prime defense in naïve tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated PCD upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds towards insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented herein indicate that these compounds also trigger local defense responses in Arabidopsis tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Medicina (Neurologia), Universidade de Lisboa, Faculdade de Medicina, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of protumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here, we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA(+) endothelial targets in vitro, regardless of the signaling domain. T cells bearing the third-generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA(+) vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide a strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. Cancer Immunol Res; 3(1); 68-84. ©2014 AACR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary : The hypothalamus represents less than 1 % of the total volume of the brain tissue, yet it plays a crucial role in endocrine regulations. Puberty is defined as a process leading to physical, sexual and psychosocial maturation. The hypothalamus is central to this process, via the activation of GnRH neurons. Pulsatile GnRH secretion, minimal during childhood, increases with the onset of puberty. The primary function of GnRH is to regulate the growth, development and function of testes in boys and ovaries in girls, by stimulating the pituitary gland secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Several factors contribute to the timing of puberty, including sex and ethnicity, genetics, dietary intake and energy expenditure. Kisspeptins constitute a family of small peptides arising from the proteolytic cleavage of metastin, a peptide with 54 amino acids initially purified from human placenta. These kisspeptins were the subject of much attention following their discovery because of their antimetastatic properties, but it was more recently that their determining role in the reproductive function was demonstrated. It was shown that kisspeptins are ligands of a receptor, GPR54, whose natural inactivating mutation in humans, or knockout in the mouse, lead to infertility. GnRH neurons play a pivotal role in the central regulation of fertility. Kisspeptin greatly increases GnRH release and GnRH neuron firing activity, but the neurobiological mechanisms for these actions are unknown. Gprotein-coupled receptor 54, the receptor for kisspeptin, is expressed by GnRH neurons as well as other hypothalamic neurons, suggesting that both direct and indirect effects are possible. In the first part of my thesis, we investigated a possible connection between the acceleration of sexual development induced by leptin and hypothalamic metastin neurons. However, the data generated by our preliminary experiments confirmed that the commercially available antibodies are non-specific. This finding constituted a major drawback for our studies, which relied heavily upon the neuroanatomical study of the hypothalamic metastinergic pathways to elucidate their sensitivity to exogenous leptin. Therefore, we decided to postpone any further in vivo experiment until a better antibody becomes available, and focused on in vitro studies to better understand the mechanisms of action of kisspeptins in the modulation of the activity of GnRH neurons. We used two GnRH-expressing neuronal cell lines to investigate the cellular and molecular mechanisms of action of metastin in GnRH neurons. We demonstrated that kisspeptin induces an early activation of the MAP kinase intracellular signaling pathway in both cell lines, whereas the SAP/JNK or the Akt pathways were unaffected. Moreover, we found an increase in GnRH mRNA levels after 6h of metastin stimulation. Thus, we can conclude that kisspeptin regulates GnRH neurons both at the secretion and the gene expression levels. The MAPK pathway is the major pathway activated by metastin in GnRH expressing neurons. Taken together, these data provide the first mechanism of action of kisspeptin on GnRH neurons. Résumé : L'hypothalamus est une zone située au centre du cerveau, dont il représente moins de 1 du volume total. La puberté est la période de transition entre l'enfance et l'age adulte, qui s'accompagne de transformations somatiques, psychologiques, métaboliques et hormonales conduisant à la possibilité de procréer. La fonction principale de la GnRH est la régulation de la croissance, du développement et de la fonction des testicules chez les hommes, et des ovaires chez les femmes en stimulant la sécrétion de l'hormone lutéinisante (LH) et de l'hormone folliculostimulante (FSH) par la glande hypophysaire. Plusieurs facteurs contribuent au déclanchement de la puberté, y compris le sexe et l'appartenance ethnique, la génétique, l'apport alimentaire et la dépense énergétique. Les Kisspeptines constituent une famille de peptides résultant de la dissociation proteolytique de la métastine, un peptide de 54 acides aminés initialement purifié à partir de placenta humain. Ces kisspeptines ont fait l'objet de beaucoup d'attention à la suite de leur découverte en raison de leurs propriétés anti-metastatiques, et c'est plus récemment que leur rôle déterminant dans la fonction reproductive a été démontré. Les kisspeptines sont des ligands du récepteur GPR54, dont la mutation inactivatrice chez l'homme, ou le knockout chez la souris, conduisent à l'infertilité par hypogonadisme hypogonadotrope. Les neurones à GnRH jouent un rôle central dans le règlement des fonctions reproductrices et la kisspeptine stimule l'activité des neurones à GnRH et la libération de GnRH par ces neurones. Toutefois, les mécanismes neurobiologiques de ces actions ne sont pas connus. Dans la première partie de ma thèse, nous avons étudié le lien potentiel entre l'accélération du développement sexuel induite par la leptine et les neurones hypothalamiques à metastine. Les données générées dans cette première série d'expériences ont malheureusement confirmé que les anticorps anti-metastine disponibles dans le commerce sont aspécifiques. Ceci a constitué un inconvénient majeur pour nos études, qui devaient fortement s'appuyer sur l' étude neuroanatomique des neurones hypothalamiques à metastine pour évaluer leur sensibilité à la leptine exogène. Nous avons donc décidé de focaliser nos travaux sur une étude in vitro des mécanismes d'action de la kisspeptine pour moduler l'activité des neurones à GnRH. Nous avons utilisé deux lignées de cellules neuronales exprimant la GnRH pour étudier les mécanismes d'action cellulaires et moléculaires de la metastine dans des neurones. Nous avons ainsi pu démontrer que la kisspeptine induit une activation précoce de la voie f de signalisation de la MAP kinase dans les deux lignées cellulaires, alors que nous n'avons observé aucune activation de la voie de signalisation de la P13 Kinase et de la SAP/JNK. Nous avons en outre démontré une augmentation de l'expression de la GnRH par la stimulation avec la Kisspeptine. L'ensemble de ces données contribue à élucider le mécanisme d'action avec lequel la kisspeptine agit dans les neurones à GnRH, en démontrant un effet sur l'expression génique de la GnRH. Nous pouvons également conclure que la voie de la MAPK est la voie principale activée par la metastine dans les neurones exprimant la GnRH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this review, we discuss a paradigm whereby changes in the intragraft microenvironment promote or sustain the development of chronic allograft rejection. A key feature of this model involves the microvasculature including (a) endothelial cell (EC) destruction, and (b) EC proliferation, both of which result from alloimmune leukocyte- and/or alloantibody-induced responses. These changes in the microvasculature likely create abnormal blood flow patterns and thus promote local tissue hypoxia. Another feature of the chronic rejection microenvironment involves the overexpression of vascular endothelial growth factor (VEGF). VEGF stimulates EC activation and proliferation and it has potential to sustain inflammation via direct interactions with leukocytes. In this manner, VEGF may promote ongoing tissue injury. Finally, we review how these events can be targeted therapeutically using mTOR inhibitors. EC activation and proliferation as well as VEGF-VEGFR interactions require PI-3K/Akt/mTOR intracellular signaling. Thus, agents that inhibit this signaling pathway within the graft may also target the progression of chronic rejection and thus promote long-term graft survival.