950 resultados para inner ear


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Delivering cochlear implants through a minimally invasive tunnel (1.8 mm in diameter) from the mastoid surface to the inner ear is referred to as direct cochlear access (DCA). Based on cone beam as well as micro-computed tomography imaging, this in vitro study evaluates the feasibility and efficacy of manual cochlear electrode array insertions via DCA. Free-fitting electrode arrays were inserted in 8 temporal bone specimens with previously drilled DCA tunnels. The insertion depth angle, procedural time, tunnel alignment as well as the inserted scala and intracochlear trauma were assessed. Seven of the 8 insertions were full insertions, with insertion depth angles higher than 520°. Three cases of atraumatic scala tympani insertion, 3 cases of probable basilar membrane rupture and 1 case of dislocation into the scala vestibuli were observed (1 specimen was damaged during extraction). Manual electrode array insertion following a DCA procedure seems to be feasible and safe and is a further step toward clinical application of image-guided otological microsurgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Sound can reach the inner ear via at least two different pathways: air conduction and bone conduction (BC). BC hearing is used clinically for diagnostic purposes and for BC hearing aids. Research on the motion of the human middle ear in response to BC stimulation is typically conducted using cadaver models. We evaluated middle ear motion of Thiel-embalmed whole-head specimens in terms of linearity, reproducibility, and consistency with the reported middle ear motion of living subjects, fresh cadaveric temporal bones, and whole-heads embalmed with a Non-Thiel solution of salts. METHODS We used laser Doppler vibrometry to measure the displacement of the skull, the umbo, the cochlear promontory, the stapes, and the round window in seven ears from four human whole-head specimens embalmed according to Thiel's method. The ears were stimulated with a Baha(®) implanted behind the auricle. RESULTS The Thiel model shows promontory velocity similar to that reported in the literature for whole-heads embalmed with a Non-Thiel solution of salts (0- to 7-dB difference). The Thiel heads' relative velocity of the stapes with respect to the promontory was similar to that of fresh cadaver temporal bones (0- to 4-dB difference). The velocity of the umbo was comparable in Thiel-embalmed heads and living subjects (0- to 10-dB difference). The skull and all middle ear elements measured responded linearly to different stimulation levels, with an average difference less than 1 dB. The variability of repeated measurements for both short- (2 h; 4 dB) and long-term (4-16 weeks; 6 dB) repetitions in the same ear, and the difference between the two ears of the same donor (approximately 10 dB) were lower than the inter-individual difference (up to 25 dB). CONCLUSION Thiel-embalmed human whole-head specimens can be used as an alternative model for the study of human middle ear mechanics secondary to BC stimulation. At some frequencies, differences from living subjects must be considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In our daily life, small flows in the semicircular canals (SCCs) of the inner ear displace a sensory structure called the cupula which mediates the transduction of head angular velocities to afferent signals. We consider a dysfunction of the SCCs known as canalithiasis. Under this condition, small debris particles disturb the flow in the SCCs and can cause benign paroxysmal positional vertigo (BPPV), arguably the most common form of vertigo in humans. The diagnosis of BPPV is mainly based on the analysis of typical eye movements (positional nystagmus) following provocative head maneuvers that are known to lead to vertigo in BPPV patients. These eye movements are triggered by the vestibulo-ocular reflex, and their velocity provides an indirect measurement of the cupula displacement. An attenuation of the vertigo and the nystagmus is often observed when the provocative maneuver is repeated. This attenuation is known as BPPV fatigue. It was not quantitatively described so far, and the mechanisms causing it remain unknown. We quantify fatigue by eye velocity measurements and propose a fluid dynamic interpretation of our results based on a computational model for the fluid–particle dynamics of a SCC with canalithiasis. Our model suggests that the particles may not go back to their initial position after a first head maneuver such that a second head maneuver leads to different particle trajectories causing smaller cupula displacements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major component of minimally invasive cochlear implantation is atraumatic scala tympani (ST) placement of the electrode array. This work reports on a semiautomatic planning paradigm that uses anatomical landmarks and cochlear surface models for cochleostomy target and insertion trajectory computation. The method was validated in a human whole head cadaver model (n = 10 ears). Cochleostomy targets were generated from an automated script and used for consecutive planning of a direct cochlear access (DCA) drill trajectory from the mastoid surface to the inner ear. An image-guided robotic system was used to perform both, DCA and cochleostomy drilling. Nine of 10 implanted specimens showed complete ST placement. One case of scala vestibuli insertion occurred due to a registration/drilling error of 0.79 mm. The presented approach indicates that a safe cochleostomy target and insertion trajectory can be planned using conventional clinical imaging modalities, which lack sufficient resolution to identify the basilar membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the molecular characterization of a microdeletion of approximately 2.5 Mb at 2p11.2 in a female baby with left congenital aural atresia, microtia, and ipsilateral internal carotid artery agenesis. The deletion was characterized by fluorescence in situ hybridization, array comparative genomic hybridization, and whole genome re-sequencing. Among the genes present in the deleted region, we focused our attention on the FOXI3 gene. Foxi3 is a member of the Foxi class of Forkhead transcription factors. In mouse, chicken and zebrafish Foxi3 homologues are expressed in the ectoderm and endoderm giving rise to elements of the jaw as well as external, middle and inner ear. Homozygous Foxi3-/- mice have recently been generated and show a complete absence of the inner, middle, and external ears as well as severe defects in the jaw and palate. Recently, a 7-bp duplication within exon 1 of FOXI3 that produces a frameshift and a premature stop codon was found in hairless dogs. Mild malformations of the outer auditory canal (closed ear canal) and ear lobe have also been noted in a fraction of FOXI3 heterozygote Peruvian hairless dogs. Based on the phenotypes of Foxi3 mutant animals, we propose that FOXI3 may be responsible for the phenotypic features of our patient. Further characterization of the genomic region and the analysis of similar patients may help to demonstrate this point. © 2015 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A retrospective evaluation of glass ionomer cement (GIC) in middle ear surgery with emphasis on short- and long-term safety was conducted at the tertiary referral center. GIC was applied between 1995 and 2006 in 444 patients in otologic surgery. Technical aspects, safety, benefits and complications due to GIC were analysed until 2011 (follow-up 5-16 years; mean 10 years). GIC was applied in stapes surgery (228 primary, 92 revisions), cochlear implants (108) and implantable hearing aids (7), ossiculoplasty (7), for coverage of opened mastoid air cells towards the external ear canal (1) and inner ear fistula closure (1). GIC turned out to be very handy in stapes surgery for optimal prosthesis fixation at the incus (260) and on the malleus handle (60) without complications. Results suggest that GIC may diminish the danger of incus necrosis in primary stapedotomy. In cochlear implants and implantable hearing aids, GIC was used for casing alone (74), casing and electrode fixation (27) and electrode alone fixation (14). Inflammatory reactions were observed in five cases (4.3 %), mostly after trauma. Broken cement fragments appeared to promote foreign body rejection. In seven cases an incudo-stapedial gap was repaired with GIC with excellent hearing gain; in three cases (43 %) revision surgery was needed due to cement breakage. In one case, GIC was applied for a watertight coverage of opened mastoid cells, and in the other for fistula closure of the lateral semi-circular canal over cartilage, covered with bone pathé; follow-up was uneventful. Targeted use of GIC in middle ear surgery rarely poses problems. GIC cannot be used in neuro-otosurgery in contact with cerebrospinal fluid because of possible aluminium encephalopathy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robotic assistance in the context of lateral skull base surgery, particularly during cochlear implantation procedures, has been the subject of considerable research over the last decade. The use of robotics during these procedures has the potential to provide significant benefits to the patient by reducing invasiveness when gaining access to the cochlea, as well as reducing intracochlear trauma when performing a cochleostomy. Presented herein is preliminary work on the combination of two robotic systems for reducing invasiveness and trauma in cochlear implantation procedures. A robotic system for minimally invasive inner ear access was combined with a smart drilling tool for robust and safe cochleostomy; evaluation was completed on a single human cadaver specimen. Access to the middle ear was successfully achieved through the facial recess without damage to surrounding anatomical structures; cochleostomy was completed at the planned position with the endosteum remaining intact after drilling as confirmed by microscope evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT  Bacterial meningitis is associated with high mortality and morbidity rates. Bacterial components induce an overshooting inflammatory reaction, eventually leading to brain damage. Pathological correlates of neurofunctional deficits include cortical necrosis, damage of the inner ear and hippocampal apoptosis. The hippocampal dentate gyrus is important for memory acquisition and harbors a neuronal stem cell niche, thus being potentially well equipped for regeneration. Adjuvant therapies aimed at decreasing the inflammatory reaction, for example, dexamethasone, and those protecting the brain from injury have been evaluated in animal models of the disease. They include nonbacteriolytic antibiotics (e.g., daptomycin), metalloproteinase inhibitors and modulators of the immunological response, for example, granulocyte colony-stimulating factor. Increasing research interest has recently been focused on interventions aimed at supporting regenerative processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE Cochlear implants (CI) are standard treatment for prelingually deafened children and postlingually deafened adults. Computed tomography (CT) is the standard method for postoperative imaging of the electrode position. CT scans accurately reflect electrode depth and position, which is essential prior to use. However, routine CT examinations expose patients to radiation, which is especially problematic in children. We examined whether new CT protocols could reduce radiation doses while preserving diagnostic accuracy. METHODS To investigate whether electrode position can be assessed by low-dose CT protocols, a cadaveric lamb model was used because the inner ear morphology is similar to humans. The scans were performed at various volumetric CT dose-indexes CTDIvol)/kV combinations. For each constant CTDIvol the tube voltage was varied (i.e., 80, 100, 120 and 140kV). This procedure was repeated at different CTDIvol values (21mGy, 11mGy, 5.5mGy, 2.8mGy and 1.8mGy). To keep the CTDIvol constant at different tube voltages, the tube current values were adjusted. Independent evaluations of the images were performed by two experienced and blinded neuroradiologists. The criteria diagnostic usefulness, image quality and artifacts (scaled 1-4) were assessed in 14 cochlear-implanted cadaveric lamb heads with variable tube voltages. RESULTS Results showed that the standard CT dose could be substantially reduced without sacrificing diagnostic accuracy of electrode position. The assessment of the CI electrode position was feasible in almost all cases up to a CTDIvol of 2-3mGy. The number of artifacts did not increase for images within this dose range as compared to higher dosages. The extent of the artifacts caused by the implanted metal-containing CI electrode does not depend on the radiation dose and is not perceptibly influenced by changes in the tube voltage. Summarizing the evaluation of the CI electrode position is possible even at a very low radiation dose. CONCLUSIONS CT imaging of the temporal bone for postoperative electrode position control of the CI is possible with a very low and significantly radiation dose. The tube current-time product and voltage can be reduced by 50% without increasing artifacts. Low-dose postoperative CT scans are sufficient for localizing the CI electrode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aminoglycosides are commonly prescribed antibiotics with deleterious side effects to the inner ear. Due to their popular application as a result of their potent antimicrobial activities, many efforts have been undertaken to prevent aminoglycoside ototoxicity. Over the years, understanding of the antimicrobial as well as ototoxic mechanisms of aminoglycosides has increased. These mechanisms are reviewed in regard to established and potential future targets of hair cell protection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES Creation of an atraumatic, hearing-preservation cochleostomy is integral to the future of minimally invasive inner ear surgery. The goal of this study was to develop and characterize a novel chemical approach to cochleostomy. STUDY DESIGN Prospective animal study. SETTING Laboratory. METHODS Experimental animal study in which phosphoric acid gel (PAG) was used to decalcify the otic capsule in 25 Hartley guinea pigs. Five animals in each of 5 surgical groups were studied: (1) mechanically opening the auditory bulla alone, (2) PAG thinning of the basal turn otic capsule, leaving endosteum covered by a layer of bone, (3) micro-pick manual cochleostomy, (4) PAG chemical cochleostomy, exposing the endosteum, and (5) combined PAG/micro-pick cochleostomy, with initial chemical thinning and subsequent manual removal of the last osseous layer. Preoperative and postoperative auditory brainstem responses and otoacoustic emissions were obtained at 2, 6, 10, and 16 kHz. Hematoxylin and eosin-stained paraffin sections were compared. RESULTS Surgical and histologic findings confirmed that application of PAG provided reproducible local bone removal, and cochlear access was enabled. Statistically significant auditory threshold shifts were observed at 10 kHz (P = .048) and 16 kHz (P = .0013) following cochleostomy using PAG alone (group 4) and at 16 kHz using manual cochleostomy (group 3) (P = .028). No statistically significant, postoperative auditory threshold shifts were observed in the other groups, including PAG thinning with manual completion cochleostomy (group 5). CONCLUSION Hearing preservation cochleostomy can be performed in an animal model using a novel technique of thinning cochlear bone with PAG and manually completing cochleostomy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cochlear implants are neuroprostheses that are inserted into the inner ear to directly electrically stimulate the auditory nerve, thus replacing lost cochlear receptors, the hair cells. The reduction of the gap between electrodes and nerve cells will contribute to technological solutions simultaneously increasing the frequency resolution, the sound quality and the amplification of the signal. Recent findings indicate that neurotrophins (NTs) such as brain derived neurotrophic factor (BDNF) stimulate the neurite outgrowth of auditory nerve cells by activating Trk receptors on the cellular surface (1–3). Furthermore, small-size TrkB receptor agonists such as di-hydroxyflavone (DHF) are now available, which activate the TrkB receptor with similar efficiency as BDNF, but are much more stable (4). Experimentally, such molecules are currently used to attract nerve cells towards, for example, the electrodes of cochlear implants. This paper analyses the scenarios of low dose aspects of controlled release of small-size Trk receptor agonists from the coated CI electrode array into the inner ear. The control must first ensure a sufficient dose for the onset of neurite growth. Secondly, a gradient in concentration needs to be maintained to allow directive growth of neurites through the perilymph-filled gap towards the electrodes of the implant. We used fluorescein as a test molecule for its molecular size similarity to DHF and investigated two different transport mechanisms of drug dispensing, which both have the potential to fulfil controlled low-throughput drug-deliverable requirements. The first is based on the release of aqueous fluorescein into water through well-defined 60-μm size holes arrays in a membrane by pure osmosis. The release was both simulated using the software COMSOL and observed experimentally. In the second approach, solid fluorescein crystals were encapsulated in a thin layer of parylene (PPX), hence creating random nanometer-sized pinholes. In this approach, the release occurred due to subsequent water diffusion through the pinholes, dissolution of the fluorescein and then release by out-diffusion. Surprisingly, the release rate of solid fluorescein through the nanoscopic scale holes was found to be in the same order of magnitude as for liquid fluorescein release through microscopic holes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nogo-A is a myelin associated protein and one of the most potent neurite growth inhibitors in the central nervous system. Interference with Nogo-A signaling has thus been investigated as therapeutic target to promote functional recovery in CNS injuries. Still, the finding that Nogo-A presents a fairly ubiquitous expression in many types of neurons in different brain regions, in the eye and even in the inner ear suggests for further functions besides the neurite growth repression. Indeed, a growing number of studies identified a variety of functions including regulation of neuronal stem cells, modulation of microglial activity, inhibition of angiogenesis and interference with memory formation. Aim of the present commentary is to draw attention on these less well-known and sometimes controversial roles of Nogo-A. Furthermore, we are addressing the role of Nogo-A in neuropathological conditions such as ischemic stroke, schizophrenia and neurodegenerative diseases.