968 resultados para influenza virus A H5N1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Doctorado en Ciencias con Especialidad en Microbiología Médica) UANL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La influenza es una entidad clínica, que es causada por los virus de la influenza A, B y C del género Influenza. El virus de la influenza A se clasifica en subtipos, con base en 2 antígenos de superficie: la hemaglutinina y la neuraminidasa. La respuesta inmune frente a estos antígenos (especialmente frente a la hemaglutinina), disminuye la probabilidad de infección, así como la severidad del cuadro clínico. La intención de este trabajo es describir el funcionamiento del programa de vigilancia centinela de influenza y otros virus respiratorios en Colombia, que permite identificar en que medida se alcanza la finalidad de esta actividad y que dificultades en general afectan su funcionamiento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding specificities of a panel of avian influenza virus subtype H5 hemagglutinin (RA) proteins bearing mutations at key residues in the receptor binding site were investigated. The results demonstrate that two simultaneous mutations in the receptor binding site resulted in H5 RA binding in a pattern similar to that shown by human viruses. Coexpression of the ion channel protein, M2, from most avian and human strains tested protected H5 RA conformation during trafficking, indicating that no genetic barrier to the reassortment of the H5 surface antigen gene with internal genes of human viruses existed at this level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal influenza virus infection is a leading cause of illness and mortality in young children and the elderly each year. Current influenza vaccines generate protective antibody responses; however, these must be given annually to provide protection against serologically distinct viruses. By contrast, CD8.sup.+ T cells are capable of recognizing conserved antigenic determinants within the influenza virion and, as such, may provide protection against a number of variant strains of the virus. CD8.sup.+ T cells play a critical key role in controlling and resolving influenza virus infections via the production of cytokines and cytolytic mediators. This article focuses on the induction of the influenza-specific CD8.sup.+ T-cell response and how these cells acquire and maintain effector function after induction. Moreover, we discuss how cytotoxic T-lymphocyte function correlates with protection following vaccination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8+ cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401+ female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIVmac251. Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly pathogenic avian influenza virus infection is associated with severe mortality in both humans and poultry. The mechanisms of disease pathogenesis and immunity are poorly understood although recent evidence suggests that cytokine/chemokine dysregulation contributes to disease severity following H5N1 infection. Influenza A virus infection causes a rapid influx of inflammatory cells, resulting in increased reactive oxygen species production, cytokine expression, and acute lung injury. Proinflammatory stimuli are known to induce intracellular reactive oxygen species by activating NADPH oxidase activity. We therefore hypothesized that inhibition of this activity would restore host cytokine homeostasis following avian influenza virus infection. A panel of airway epithelial and immune cells from mammalian and avian species were infected with A/Puerto Rico/8/1934 H1N1 virus, low-pathogenicity avian influenza H5N3 virus (A/duck/Victoria/0305-2/2012), highly pathogenic avian influenza H5N1 virus (A/chicken/Vietnam/0008/2004), or low-pathogenicity avian influenza H7N9 virus (A/Anhui/1/2013). Quantitative real-time reverse transcriptase PCR showed that H5N1 and H7N9 viruses significantly stimulated cytokine (interleukin-6, beta interferon, CXCL10, and CCL5) production. Among the influenza-induced cytokines, CCL5 was identified as a potential marker for overactive immunity. Apocynin, a Nox2 inhibitor, inhibited influenza-induced cytokines and reactive oxygen species production, although viral replication was not significantly altered in vitro. Interestingly, apocynin treatment significantly increased influenza virus-induced mRNA and protein expression of SOCS1 and SOCS3, enhancing negative regulation of cytokine signaling. These findings suggest that apocynin or its derivatives (targeting host responses) could be used in combination with antiviral strategies (targeting viruses) as therapeutic agents to ameliorate disease severity in susceptible species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the natural reservoirs of the avian influenza (AI) virus have been extensively studied in many countries, there is a clear lack of information on this subject in South America, particularly in Brazil. The objective of this study was to conduct a serological survey for H5, H7 and H9 antibodies to AI-subtype viruses in wild birds in the state of São Paulo, Brazil. Serum samples were tested using the hemagglutination-inhibition assay. Out of the 31 wild birds sampled between January and December of 2006, seven (22.58%), were seropositive for H5, H7 and H9; four (12.90%) were seropositive for H5 and H7; 13 (41.94%), were seropositive only for H7; three (9.7%), were seropositive only for H9; and four (12.90%) were negative for all three hemagglutinin subtypes. These results indicate that AI viruses belonging to H5, H7 and H9 subtypes circulate among wild birds in the state of São Paulo in the form of either concurrent or consecutive infections. This study contributes to the knowledge of AI epidemiology in Brazil, and stresses the need of further detailed and long-term epidemiological and ecological investigation to determine the current status of this virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergency of infection by highly pathogenic avian influenza virus (HPAI) subtype H5N1 has focused the attention of the world scientific community, requiring the prompt provision of effective control systems for early detection of the circulation of low pathogenic influenza H5 viruses (LPAI) in populations of wild birds to prevent outbreaks of highly pathogenic (HPAI) in populations of domestic birds with possible transmission to humans. The project stems from the aim to provide, through a preliminary analysis of data obtained from surveillance in Italy and Europe, a preliminary study about the virus detection rates and the development of mathematical models, an objective assessment of the effectiveness of avian influenza surveillance systems in wild bird populations, and to point out guidelines to support the planning process of the sampling activities. The results obtained from the statistical processing quantify the sampling effort in terms of time and sample size required, and simulating different epidemiological scenarios identify active surveillance as the most suitable for endemic LPAI infection monitoring in wild waterfowl, and passive surveillance as the only really effective tool in early detecting HPAI H5N1 circulation in wild populations. Given the lack of relevant information on H5N1 epidemiology, and the actual finantial and logistic constraints, an approach that makes use of statistical tools to evaluate and predict monitoring activities effectiveness proves to be of primary importance to direct decision-making and make the best use of available resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As oxidative stress has been implicated in the pathogenesis of certain viral diseases we determined antioxidant and prooxidant parameters in lungs and bronchoalveolar lavage fluid (BALF) of mice infected with a lethal dose of influenza A/PR8/34 virus. Viral infection was characterized by massive infiltration of leukocytes, mainly polymorphonuclear leukocytes, into the alveolar space. The total number of BALF cells increased up to 8-fold (day 3 post-infection) and these cells appeared activated as judged by their increased rates of superoxide anion radical (O2-.) generation upon stimulation. Maximal rates of radical generation by BALF cells during the early stages of infection were 15- or 70-fold higher than those of cells from control animals when expressed per cell or total BALF cells, respectively. At the terminal stages of infection the total capacity of BALF cells to release O2-. declined to approximately 35-fold the control values. Infection also resulted in increased in vivo formation of hydrogen peroxide (H2O2) within the lungs at a time that coincided with the maximal capacity of BALF cells to release O2-.. Whereas pulmonary activities of glutathione peroxidase and reductase remained unaltered, levels of ascorbate in the cell-free BALF decreased significantly during the early stages of the infection and then returned to normal levels and above, late in infection. The oxidation state of the dehydroascorbic acid/ascorbate couple increased concomitantly with the decrease in ascorbate concentrations early in infection and remained elevated throughout the infection. As assessed by the prevention of peroxyl radical-induced loss of phycoerythrin fluorescence, the total antioxidant capacity present in lung tissue homogenate from terminally ill animals was not diminished when compared to that prepared from lungs of control mice. We conclude that although early stages of influenza infection are associated with the presence of oxidative stress in the lung tissue and alveolar fluid lining the epithelial cells, this stress does not appear to overwhelm local antioxidant defenses. The results therefore do not support a direct causative role of oxidative tissue damage in the pathogenesis of influenza virus infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The M2 protein from influenza A virus forms proton-selective channels that are essential to viral function and are the target of the drug amantadine. Cys scanning was used to generate a series of mutants with successive substitutions in the transmembrane segment of the protein, and the mutants were expressed in Xenopus laevis oocytes. The effect of the mutations on reversal potential, ion currents, and amantadine resistance were measured. Fourier analysis revealed a periodicity consistent with a four-stranded coiled coil or helical bundle. A three-dimensional model of this structure suggests a possible mechanism for the proton selectivity of the M2 channel of influenza virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissection of the primary and secondary response to an influenza A virus established that the liver contains a substantial population of CD8+ T cells specific for the immunodominant epitope formed by H-2Db and the influenza virus nucleoprotein peptide fragment NP366–374 (DbNP366). The numbers of CD8+ DbNP366+ cells in the liver reflected the magnitude of the inflammatory process in the pneumonic lung, though replication of this influenza virus is limited to the respiratory tract. Analysis of surface phenotypes indicated that the liver CD8+ DbNP366+ cells tended to be more “activated” than the set recovered from lymphoid tissue but generally less so than those from the lung. The distinguishing characteristic of the lymphocytes from the liver was that the prevalence of the CD8+ DbNP366+ set was always much higher than the percentage of CD8+ T cells that could be induced to synthesize interferon γ after short-term, in vitro stimulation with the NP366–374 peptide, whereas these values were generally comparable for virus-specific CD8+ T cells recovered from other tissue sites. Also, the numbers of apoptotic CD8+ T cells were higher in the liver. The results overall are consistent with the idea that antigen-specific CD8+ T cells are destroyed in the liver during the control and resolution phases of this viral infection, though this destruction is not necessarily an immediate process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé: Chaque année, les épidémies saisonnières d’influenza causent de 3 à 5 millions de cas sévères de maladie, entraînant entre 250 000 et 500 000 décès mondialement. Seulement deux classes d’antiviraux sont actuellement commercialisées pour traiter cette infection respiratoire : les inhibiteurs de la neuraminidase, tels que l’oseltamivir (Tamiflu) et les inhibiteurs du canal ionique M2 (adamantanes). Toutefois, leur utilisation est limitée par l’apparition rapide de résistance virale. Il est donc d’un grand intérêt de développer de nouvelles stratégies thérapeutiques pour le traitement de l’influenza. Le virus influenza dépend de l’activation de sa protéine de surface hémagglutinine (HA) pour être infectieux. L’activation a lieu par clivage protéolytique au sein d’une séquence d’acides aminés conservée. Ce clivage doit être effectué par une enzyme de l’hôte, étant donné que le génome du virus ne code pour aucune protéase. Pour les virus infectant l’humain, plusieurs études ont montré le potentiel de protéases à sérine transmembranaires de type II (TTSP) à promouvoir la réplication virale : TMPRSS2, TMPRSS4, HAT, MSPL, Desc1 et matriptase, identifiée récemment par notre équipe (Beaulieu, Gravel et al., 2013), activent l’HA des virus influenza A (principalement H1N1 et H3N2). Toutefois, il existe peu d’information sur le clivage de l’HA des virus influenza B, et seulement TMPRSS2 et HAT ont été identifiées comme étant capables d’activer ce type de virus. Les travaux de ce projet de maîtrise visaient à identifier d’autres TTSP pouvant activer l’HA de l’influenza B. L’efficacité de clivage par la matriptase, hepsine, HAT et Desc1 a été étudiée et comparée entre ces TTSP. Ces quatre protéases s’avèrent capables de cliver l’HA de l’influenza B in vitro. Cependant, seul le clivage par matriptase, hepsine et HAT promeut la réplication virale. De plus, ces TTSP peuvent aussi supporter la réplication de virus influenza A. Ainsi, l’utilisation d’un inhibiteur de TTSP, développé en collaboration avec notre laboratoire, permet de bloquer significativement la réplication virale dans les cellules épithéliales bronchiques humaines Calu-3. Cet inhibiteur se lie de façon covalente et lentement réversible au site actif de la TTSP par un mécanisme slow tight-binding. Puisque cet inhibiteur cible une composante de la cellule hôte, et non une protéine virale, il n’entraîne pas le développement de résistance après 15 passages des virus en présence de l’inhibiteur dans les cellules Calu-3. L’inhibition des TTSP activatrices d’HA dans le système respiratoire humain représente donc une nouvelle stratégie thérapeutique pouvant mener au développement d’antiviraux efficaces contre l’influenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5), an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7) and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9) in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP) conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first North American outbreak of highly pathogenic avian influenza (HPAI) involving a virus of Eurasian A/goose/Guangdong/1/1996 (H5N1) lineage began in the Fraser Valley of British Columbia, Canada in late November 2014. A total of 11 commercial and 1 non-commercial (backyard) operations were infected before the outbreak was terminated. Control measures included movement restrictions that were placed on a total of 404 individual premises, 150 of which were located within a 3 km radius of an infected premise(s) (IP). A complete epidemiological investigation revealed that the source of this HPAI H5N2 virus for 4 of the commercial IPs and the single non-commercial IP likely involved indirect contact with wild birds. Three IPs were associated with the movement of birds or service providers and localized/environmental spread was suspected as the source of infection for the remaining 4 IPs. Viral phylogenies, as determined by Bayesian Inference and Maximum Likelihood methods, were used to validate the epidemiologically inferred transmission network. The phylogenetic clustering of concatenated viral genomes and the median-joining phylogenetic network of the viruses supported, for the most part, the transmission network that was inferred by the epidemiologic analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Children having chemotherapy for cancer are prone to developing influenza infections. Influenza virus infection may lead to hospitalization/prolonged hospitalization, interruption of treatment, and other severe adverse outcomes such as death. Although clinical guidelines recommend children who are being treated for cancer be vaccinated against influenza, evidence supporting this recommendation is unclear.--------- Objectives: The objectives of this review were to (1) assess the efficacy of influenza vaccination in stimulating immunologic response in children with cancer receiving chemotherapy, compared with other control groups; (2) assess the efficacy of influenza vaccination in preventing influenza infection; and (3) establish any adverse effects associated with influenza vaccines in children with cancer.