934 resultados para horizon
Resumo:
For the upcoming calls for Horizon 2020 research funding, the European Commission has said that it would prefer bids from open, collaborative consortia rather than the competitive bids seen in previous funding programmes. To this end, the organizers of 18 European biodiversity informatics projects agreed at a meeting in Rome…
Resumo:
The exhibition investigates the unrepresentable and considers the distinct ways invisible forces can be given visual manifestation through painted images.
Resumo:
Model Predictive Control (MPC) is a control method that solves in real time an optimal control problem over a finite horizon. The finiteness of the horizon is both the reason of MPC's success and its main limitation. In operational water resources management, MPC has been in fact successfully employed for controlling systems with a relatively short memory, such as canals, where the horizon length is not an issue. For reservoirs, which have generally a longer memory, MPC applications are presently limited to short term management only. Short term reservoir management can be effectively used to deal with fast process, such as floods, but it is not capable of looking sufficiently ahead to handle long term issues, such as drought. To overcome this limitation, we propose an Infinite Horizon MPC (IH-MPC) solution that is particularly suitable for reservoir management. We propose to structure the input signal by use of orthogonal basis functions, therefore reducing the optimization argument to a finite number of variables, and making the control problem solvable in a reasonable time. We applied this solution for the management of the Manantali Reservoir. Manantali is a yearly reservoir located in Mali, on the Senegal river, affecting water systems of Mali, Senegal, and Mauritania. The long term horizon offered by IH-MPC is necessary to deal with the strongly seasonal climate of the region.
Resumo:
Araújo, Páscoa and Torres-Martinez (2002) have shown that, without imposing either debt constraints or transversality conditions, Ponzi schemes are ruled out in infinite horizon economies with default when collateral is the only mechanism that partially secures loans. Páscoa and Seghir (2008) subsequently show that Ponzi schemes may reappear if, additionally to the seizure of the collateral, there are sufficiently harsh default penalties assessed (directly in terms of utility) against the defaulters. They also claim that if default penalties are moderate then Ponzi schemes are ruled out and existence of a competitive equilibrium is ensured. The objective of this paper is two fold. First, contrary to what is claimed by Páscoa and Seghir (2008), we show that moderate default penalties do not always prevent agents to run a Ponzi scheme. Second, we provide an alternative condition on default penalties that is sufficient to rule out Ponzi schemes and ensure the existence of a competitive equilibrium.
Resumo:
Araujo, Páscoa and Torres-Martínez (2002) showed that, without imposing any debt constraint, Ponzi schemes are ruled out in infinite horizon economies with limited commitment when collateral is the only mechanism that partially secures loans. Páscoa and Seghir (2009) presented two examples in which they argued that Ponzi schemes may reappear if, additionally to the seizure of the collateral, there are sufficiently harsh default penalties assessed (directly in terms of utility) against the defaulters. Moreover, they claimed that if default penalties are moderate then Ponzi schemes are ruled out and existence of a competitive equilibrium is restored. This paper questions the validity of the claims made in Páscoa and Seghir (2009). First, we show that it is not true that harsh default penalties lead to Ponzi schemes in the examples they have proposed. A competitive equilibrium with no trade can be supported due to unduly pessimistic expectations on asset deliveries. We subsequently refine the equilibrium concept in the spirit of Dubey, Geanakoplos and Shubik (2005) in order to rule out spurious inactivity on asset markets due to irrational expectations. Our second contribution is to provide a specific example of an economy with moderate default penalties in which Ponzi schemes reappear when overpessimistic beliefs on asset deliveries are ruled out. Our finding shows that, contrary to what is claimed by Páscoa and Seghir (2009), moderate default penalties do not always prevent agents to run a Ponzi scheme.
Resumo:
This work aims to compare the forecast efficiency of different types of methodologies applied to Brazilian Consumer inflation (IPCA). We will compare forecasting models using disaggregated and aggregated data over twelve months ahead. The disaggregated models were estimated by SARIMA and will have different levels of disaggregation. Aggregated models will be estimated by time series techniques such as SARIMA, state-space structural models and Markov-switching. The forecasting accuracy comparison will be made by the selection model procedure known as Model Confidence Set and by Diebold-Mariano procedure. We were able to find evidence of forecast accuracy gains in models using more disaggregated data
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we consider nonautonomous optimal control problems of infinite horizon type, whose control actions are given by L-1-functions. We verify that the value function is locally Lipschitz. The equivalence between dynamic programming inequalities and Hamilton-Jacobi-Bellman (HJB) inequalities for proximal sub (super) gradients is proven. Using this result we show that the value function is a Dini solution of the HJB equation. We obtain a verification result for the class of Dini sub-solutions of the HJB equation and also prove a minimax property of the value function with respect to the sets of Dini semi-solutions of the HJB equation. We introduce the concept of viscosity solutions of the HJB equation in infinite horizon and prove the equivalence between this and the concept of Dini solutions. In the Appendix we provide an existence theorem. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A lot sizing and scheduling problem from a foundry is considered in which key materials are produced and then transformed into many products on a single machine. A mixed integer programming (MIP) model is developed, taking into account sequence-dependent setup costs and times, and then adapted for rolling horizon use. A relax-and-fix (RF) solution heuristic is proposed and computationally tested against a high-performance MIP solver. Three variants of local search are also developed to improve the RF method and tested. Finally the solutions are compared with those currently practiced at the foundry.
Resumo:
This paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).
Resumo:
The linear quadratic Gaussian control of discrete-time Markov jump linear systems is addressed in this paper, first for state feedback, and also for dynamic output feedback using state estimation. in the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (T N), or the occurrence of a crucial failure event (τ δ), after which the system paralyzed. From the constructive method used here a separation principle holds, and the solutions are given in terms of a Kalman filter and a state feedback sequence of controls. The control gains are obtained by recursions from a set of algebraic Riccati equations for the former case or by a coupled set of algebraic Riccati equation for the latter case. Copyright © 2005 IFAC.