953 resultados para hindered-amine
Synthesis of propylene glycol methyl ether over amine modified porous silica by ultrasonic technique
Resumo:
Novel sulfamide-amine alcohol ligands were designed using a grafting strategy and synthesized from readily available starting materials via a simple, efficient method. The key features of these ligands for the asymmetric addition of diethylzinc to aldehydes included stability, enhanced effectiveness without using Ti((OPr)-Pr-i)(4), suitability for a variety of aldehydes, the ability to operate at room temperature, and selectability to afford either absolute configuration products with enantiomeric excess up to >99%.
Resumo:
Hyperbranched poly(amido amine)s containing vinyl and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3-amino-1,2-propanediol (APD) with equal molar ratio in feed. H-1, C-13 and HSQC NMR techniques were used to clarify the structure of hyperbranched polymers and polymerization mechanism.
Resumo:
Two novel bis(amine anhydride) monomers, N,N'-bis(3,4-dicarboxyphenyl)-1,4-phenylenediamine dianhydride I and N,/N'-bis(3,4-dicarboxyphenyl)-1,3-phenylenediamine dianhydride 11, were prepared via palladium-catalyzed amination reaction of 4-chloro-N-methylphthaliniide with 1,4-phenylenediamine or 1,3-phenylenediamine, followed by alkaline hydrolysis of the intermediate bis(amine imide)s and subsequent dehydration of the resulting tetraacids. A series of new poly(amine imide)s were prepared from the synthesized dianhydride monomers with various diamines in NMP via conventional two-step method.
Resumo:
Stable gold nanoparticles with average size 1.7 nm synthesized by an amine-terminated ionic liquid showed enhanced electrocatalytic activity and high stability.
Resumo:
The extraction behavior of thorium(IV) sulfate by primary amine N1923 in imidazolium-based ionic liquid (IL) namely 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim]PF6) was systematically studied in this paper. Results showed that the extraction behavior was quite different from that using conventional solvent as diluent. A reversed micellar solubilization extraction mechanism was proposed for the extraction of thorium(IV) by N1923/[C(8)mim]PF6 via slope analysis method and polarized optical microscopy (POM)/transmission electron microscopy (TEM) observation. The salt-out agent, Na2SO4, was demonstrated to prompt this extraction mechanism.
Resumo:
Extraction kinetics of thorium(IV) with primary amine N1923 in sulfate media has been investigated by a constant interfacial cell with laminar flow. Studies of interfacial tension and effects of the stirring rate, temperature, and specific interfacial area on mass transfer rate show that the most probable reaction zone takes place at the liquid-liquid interface. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the rate equation of extracting thorium has been obtained as follows: -d[Th(IV)]((o))/dt = 10(-3.10)center dot[Th(IV)](0.89)center dot[(RNH3)(2)SO4](0.74).
Resumo:
Synergistic effect in the extraction of rare earth (RE) metals by the acid-base coupling (ABC) extractants of calix[4]arene carboxyl derivative Bu-t[4]CH2COOH (H(4)A) and primary amine N1923 (RNH2) has been investigated. The extraction of RE was enhanced by the addition of sodium cations into the aqueous phase not only in the extraction system of Bu-t[4]CH2COOH alone but also in the mixture of Bu-t[4]CH2COOH and N1923. The separation factors (SFs) indicating the extraction selectivity of adjacent RE elements became higher in the mixture system.
Resumo:
A facile method to obtain polydisperse chemically-converted graphene sheets that are covalently functionalized with ionic liquid was reported-the resulting graphene sheets, without any assistance from polymeric or surfactant stabilizers, can be stably dispersed in water, DMF, and DMSO.
Resumo:
Water solubility and surface functionalization of magnetic nanoparticles are crucial for bioapplication.[1]In this study,we presented a facile coprecipitation approach to synthesize lysine stabilized Fe3O4 nanoparticles.Lysine functionalized magnetite nanoparticles show an excellent colloidal stability of >20h.The as-synthesized magnetite nanoparticles have abundant amine groups on their surface which provide convenient sites for covalent linking of biological macromolecules.We believe that these amine-functionalized magnetic nanoparticles can be potentially used in fields such as magnetic bio-separation,immunoassay,MRI,and targeted drug delivery.
Resumo:
Two novel bis(amine anhydride)s, NN-bis(3,4-dicarboxyphenyl)aniline dianhydride (I) and N,N-bis(3,4-dicarboxyphenyl)-p-tert-butylaniline (II), were synthesized from the palladium-catalyzed amination reaction of N-methyl-protected 4-chlorophthalic anhydride with arylamines, followed by alkaline hydrolysis of the intermediate bis(amine-phthalimide)s and subsequent dehydration of the resulting tetraacids. The X-ray structures of anhydride I and II were determined. The obtained dianhydride monomers were reacted with various aromatic diamines to produce a series of novel polyimides. Because of the incorporation of bulky, propeller-shaped triphenylamine units along the polymer backbone, all polyimides exhibited good solubility in many aprotic solvents while maintaining their high thermal properties. These polymers had glass transition temperatures in the range of 298-408 degrees C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 525 degrees C in nitrogen.The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 95-164 MPa, 8.8-15.7%, and 1.3-2.2 GPa, respectively.
Resumo:
BACKGROUND: Thermodynamic studies on Ce(IV) extraction with primary amine N1923 demonstrate that primary amine N1923 is an excellent extractant for separation of Ce(IV) from Re(III). In order to clarify the mechanism of extraction and to optimize the parameters in practical extraction systems used in the rare earth industry, the extraction kinetics was investigated using a constant interfacial area cell with laminar flow in the present work.RESULTS: The data indicate that the rate constant (k(ao).) becomes constant when stirring speed exceeds 250 rpm. The apparent forward extraction rate is calculated to be 10(-1.70). The activation energy (E.) was calculated to be 20.5 kJ/mol from the slope of log kao against 1000/T. The minimum bulk concentration of the extractant necessary to saturate the interface (C-min) is lower than 10(-5) mol L-1.CONCLUSION: Studies of interfacial tension and the effects of stirring rate and specific interfacial area on the extraction rate show that the extraction rate is kinetically controlled, and a mass transfer model has been proposed. The rate equation has been obtained as: -d[Ce(IV)]/dt = 10(-1.70)[Ce(IV)] [(RNH3)(2)SO4](1.376). The rate-controlling step has been evaluated from analysis of the experimental results.
Resumo:
The influences of additive, diluents, temperature, acidity of the aqueous phase on the interfacial behavior of primary amine N1923 in sulfate media have been investigated using the Du Nouy ring method. In addition, the effect of concentration of thorium(IV) loaded in the organic phase on the interfacial tension has also been studied. The interfacial tension isotherms are processed by matching different adsorption equations such as the Gibbs and the Szyszkowski. The surface excess at the saturated interface (Gamma (max)) and the minimum bulk concentration of the extractant necessary to saturate the interface (C-min) under different conditions are calculated according to two adsorption equations to be presented in comprehensive tables and figures. It appears that primary amine N1923 has strong interfacial activity and behaves very differently in various diluents systems. The surface excess at saturated interface increase with the type of diluerits in the following order: chloroform < aromatic hydrocarbons < aliphatic hydrocarbons. The relationship between the interfacial activity and kinetics of thorium extraction by primary amine N1923 has been discussed by considering different factors. However, the interfacial activity of primary amine N1923 is only a qualitative parameter suggesting the interfacial mechanism for thorium extraction, it cannot give strong evidence quantitatively supporting this mechanism.
Resumo:
A new method for synthesis of novel hyperbranched poly(ester-amide)s from commercially available AA' and CBx type monomers has been developed on the basis of a series of model reactions. The hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by thermal polycondensation of carboxyl anhydrides (AA') and multihydroxyl primary amine (CBx) without any catalyst and solvent. The reaction mechanism in the initial stage of polymerization was investigated with in situ H-1 NMR. In the initial stage of the reaction, primary amino groups of 2-amino-2-ethyl-1,3-propanediol (AEPO) or tris(hydroxymethyl)aminomethane (THAM) react rapidly with anhydride, forming an intermediate which can be considered as a new AB(x) type monomer. Further self-polycondensation reactions of the AB. molecules produce hyperbranched polymers. Analysis using H-1 and C-13 NMR spectroscopy revealed the degree of branching of the resulting polymers ranging from 0.36 to 0.55. These hyperbranched poly(ester-amide)s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy, possess high molecular weights with broad distributions and display glass-transition temperatures (T(g)s) between 7 and 96 degreesC.