776 resultados para high strength concrete
Resumo:
A supramolecular polymer blend, formed via π-π interactions between a π-electron rich pyrenyl endcapped oligomer and a chain-folding oligomer containing pairs of π-electron poor naphthalene-diimide (NDI) units, has been reinforced with cellulose nanocrystals (CNCs) to afford a healable nanocomposite material. Nanocomposites with varying weight percentage of CNCs (from 1.25 to 20.0 wt.%) within the healable supramolecular polymeric matrix have been prepared via solvent casting followed by compression molding, and their mechanical properties and healing behavior have been evaluated. It is found that homogeneously dispersed films can be formed with CNCs at less than 10 wt.%. Above 10 wt.% CNC heterogeneous nanocomposites were obtained. All the nanocomposites formed could be re-healed upon exposure to elevated temperatures although, for the homogeneous films, it was found that the healing rate was reduced with increasing CNC content. The best combination of healing efficiency and mechanical properties was obtained with the 7.5 wt.% CNC nanocomposite which exhibited a tensile modulus enhanced by as much as a factor of 20 over the matrix material alone and could be fully re-healed at 85 °C within 30 minutes. Thus it is demonstrated that supramolecular nanocomposites can afford greatly enhanced mechanical properties relative to the unreinforced polymer, while still allowing efficient thermal healing.
Resumo:
One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.
Resumo:
Residual stresses play an important role in the fatigue lives of structural engineering components. In the case of near surface tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. In both decorative and functional applications, chromium electroplating results in excellent wear and corrosion resistance. However, it is well known that it reduces the fatigue strength of a component. This is due to high tensile internal stresses and microcrack density. Efforts to improve hard chromium properties have increased in recent years. In this study, the effect of a nickel layer sulphamate process, as simple layer and interlayer, on fatigue strength of hard chromium electroplated AISI 4340 steel hardness - HRc 53, was analysed. The analysis was performed by rotating bending fatigue tests on AISI 4340 steel specimens with the following experimental groups: base material, hard chromium electroplated, sulphamate nickel electroplated, sulphamate nickel interlayer on hard chromium electroplated and electroless nickel interlayer on hard chromium electroplated. Results showed a decrease in fatigue strength in coated specimens and that both nickel plating interlayers were responsible for the increase in fatigue life of AISI 4340 chromium electroplated steel. The shot peening pre-treatment was efficient in reducing fatigue loss in the alternatives studied.
Resumo:
Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance have resulted in the search for possible alternatives. Zinc-nickel (Zn-Ni) alloys have received considerable interest recently, because these coatings show advantages such as a good resistance to white and red rust, high plating rates, and acceptance in the market. In this study, the effect of electroplated Zn-Ni coatings on AISI 4340 high-strength steel was analyzed for rotating bending fatigue strength, corrosion, and adhesion resistance. The compressive residual stress field was measured by x-ray diffraction prior to fatigue tests. Optical microscopy documented coating thickness, adhesion characteristics, and coverage extent for nearly all substrates. Fractured fatigue specimens were investigated using scanning electron microscopy (SEM). Three different Zn-Ni coating thicknesses were tested, and comparisons with the rotating bending fatigue data from electroplated Cd specimens were performed. Experimental results differentiated the effects of the various coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the influence of coating thickness on the fatigue strength.
Resumo:
Bending fatigue tests were carried out to clarify the effects of heat treatment parameters: temperature and time after cadmium electroplating on a high strength steel, to avoid hydrogen embrittlement. Temperatures heat of 190 degrees C, 230 degrees C, 250 degrees C and 300 degrees C at 3, 8 and 24 hours together with the base material electroplated, with and without heat treatment, resulted in 14 conditions studied with respect to fatigue behaviour. Statistical data analysis was performed to identify the best combination temperature/time regarding fatigue strength of the ABNT 4340 steel and the results obtained revealed that the fatigue strength depend on temperature/time conditions.
Resumo:
In cases of decorative and functional applications, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. However, pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics has increased in recent years, related to the reduction in the fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride-free hard chromium electroplating is an improvement to the conventional process, considering chemical and physical final properties. One of the most interesting, environmentally safer and cleaner alternatives for the replacement of hard chrome plating is tungsten carbide thermal spray coating, applied by the high velocity oxy-fuel (HVOF) process. The aim of this study was to analyse the effects of the tungsten carbide thermal spray coating applied by the HP/HVOF process and of the high efficiency and fluoride-free hard chromium electroplating (in the present paper called 'accelerated'), in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behaviour in fatigue, corrosion, and abrasive wear tests. The results showed that the coatings were damaging to the AISI 4340 steel behaviour when submitted to fatigue testing, with the tungsten carbide thermal spray coatings showing the better performance. Experimental data from abrasive wear tests were conclusive, indicating better results from the WC coating. Regarding corrosion by salt spray test, both coatings were completely corroded after 72 h exposure. Scanning electron microscopy technique (SEM) and optical microscopy were used to observe crack origin sites, thickness and adhesion in all the coatings and microcrack density in hard chromium electroplatings, to aid in the results analysis. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Fatigue crack initiation occurs at the surface, although sub surface nucleation has also been reported. Localized imperfections like inclusions close to surface and surface small pits can result in crack sources. Coatings are not always beneficial by fatigue point of view too. Mechanical properties of the covering material can change considerably the fatigue behavior of base metal due to residual surface stresses, to micro cracks or to hydrogen embrittlement. This paper is concerned with analysis of electrolytic etch on the fatigue resistance of a 35NCD16 high strength steel in a mechanical condition of (1760 - 1960) MPa, and analysis of electroplated hard chromium effects on the fatigue resistance in a strength condition of 989 MPa. Hardness impression was used as a reference parameter in case of electrolytic etch. In both cases, experimental data showed that fatigue strength of 35NCD16 steel was considerably reduced. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
It is well known that fatigue behaviour is an important parameter to be considered in mechanical components subjected to constant and variable amplitude loadings. In combination with corrosion phenomenon, fatigue effects were responsible for proximally 64% of fails that occur in metallic parts of aeronautical accidents in the last 30 years. Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance, resulted in the search for possible alternatives. Zinc-nickel alloys received considerable interest recently, since these coatings showed some advantages such as a good resistance to white and red rust, high plating rates and acceptation in the market. In this study the effects of zinc-nickel coatings electroplated on AISI 4340 high strength steel were analysed on rotating bending and axial fatigue strength, corrosion and adhesion resistance. Compressive residual stress field was measured by a X-ray tensometry prior to fatigue tests. Optical microscopy images showed coating thicknesses, adhesion and the existence of an uniform coverage of nearly all substrates. The fractured fatigue specimens were investigated using a scanning electron microscope. Three different zinc-nickel coating thicknesses were tested and comparison with rotating bending fatigue data from specimens cadmium electroplated and heat treated at 190°C for 3, 8 and 24 hours to avoid the diffusion of hydrogen in the substrate, was performed. Experimental results showed effect of coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the existence of coating thickness influence on the fatigue strength.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.
Resumo:
This Ultra High Performance Concrete research involves observing early-age creep and shrinkage under a compressive load throughout multiple thermal curing regimes. The goal was to mimic the conditions that would be expected of a precast/prestressing plant in the United States, where UHPC beams would be produced quickly to maximize a manufacturing plant’s output. The practice of steam curing green concrete to accelerate compressive strengths for early release of the prestressing tendons was utilized (140°F [60°C], 95% RH, 14 hrs), in addition to the full thermal treatment (195°F [90°C], 95% RH, 48 hrs) while the specimens were under compressive loading. Past experimental studies on creep and shrinkage characteristics of UHPC have only looked at applying a creep load after the thermal treatment had been administered to the specimens, or on ambient cured specimens. However, this research looked at mimicking current U.S. precast/prestressed plant procedures, and thus characterized the creep and shrinkage characteristics of UHPC as it is thermally treated under a compressive load. Michigan Tech has three moveable creep frames to accommodate two loading criteria per frame of 0.2f’ci and 0.6f’ci. Specimens were loaded in the creep frames and moved into a custom built curing chamber at different times, mimicking a precast plant producing several beams throughout the week and applying a thermal cure to all of the beams over the weekend. This thesis presents the effects of creep strain due to the varying curing regimes. An ambient cure regime was used as a baseline for the comparison against the varying thermal curing regimes. In all cases of thermally cured specimens, the compressive creep and shrinkage strains are accelerated to a maximum strain value, and remain consistent after the administration of the thermal cure. An average creep coefficient for specimens subjected to a thermal cure was found to be 1.12 and 0.78 for the high and low load levels, respectively. Precast/pressed plants can expect that simultaneously thermally curing UHPC elements that are produced throughout the week does not impact the post-cure creep coefficient.
Resumo:
A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 10 9 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically steels and Al and Ti alloys) under different LSP irradiation conditions are presented
Resumo:
This paper summarizes the research activities focused on the behaviour of concrete and concrete structures subjected to blast loading carried out by the Department of Materials Science of the Technical University of Madrid (PUM). These activities comprise the design and construction of a test bench that allows for testing up to four planar concrete specimens with one single explosion, the study of the performance of different protection concepts for concrete structures and, finally, the development of a numerical model for the simulation of concrete structural elements subjected to blast. Up to date 6 different types of concrete have been studied, from plain normal strength concrete, to high strength concrete, including also fibre reinforced concretes with different types of fibres. The numerical model is based on the Cohesive Crack Model approach, and has been developed for the LSDYNA finite element code through a user programmed subroutine. Despite its simplicity, the model is able to predict the failure patterns of the concrete slabs tested with a high level of accuracy