High-strength, healable, supramolecular polymer nanocomposites
Data(s) |
09/03/2012
|
---|---|
Resumo |
A supramolecular polymer blend, formed via π-π interactions between a π-electron rich pyrenyl endcapped oligomer and a chain-folding oligomer containing pairs of π-electron poor naphthalene-diimide (NDI) units, has been reinforced with cellulose nanocrystals (CNCs) to afford a healable nanocomposite material. Nanocomposites with varying weight percentage of CNCs (from 1.25 to 20.0 wt.%) within the healable supramolecular polymeric matrix have been prepared via solvent casting followed by compression molding, and their mechanical properties and healing behavior have been evaluated. It is found that homogeneously dispersed films can be formed with CNCs at less than 10 wt.%. Above 10 wt.% CNC heterogeneous nanocomposites were obtained. All the nanocomposites formed could be re-healed upon exposure to elevated temperatures although, for the homogeneous films, it was found that the healing rate was reduced with increasing CNC content. The best combination of healing efficiency and mechanical properties was obtained with the 7.5 wt.% CNC nanocomposite which exhibited a tensile modulus enhanced by as much as a factor of 20 over the matrix material alone and could be fully re-healed at 85 °C within 30 minutes. Thus it is demonstrated that supramolecular nanocomposites can afford greatly enhanced mechanical properties relative to the unreinforced polymer, while still allowing efficient thermal healing. |
Formato |
text text |
Identificador |
http://centaur.reading.ac.uk/27638/4/ja-2012-00050x_SI_revised.pdf http://centaur.reading.ac.uk/27638/5/ja-2012-00050x_manuscript_revised.pdf Fox, J., Wie, J. , Greenland, B. <http://centaur.reading.ac.uk/view/creators/90000619.html>, Burattini, S. <http://centaur.reading.ac.uk/view/creators/90003233.html>, Hayes, W. <http://centaur.reading.ac.uk/view/creators/90000315.html>, Colquhoun, H. <http://centaur.reading.ac.uk/view/creators/90000005.html>, Mackay, M. and Rowan, S. (2012) High-strength, healable, supramolecular polymer nanocomposites. Journal of the American Chemical Society, 134 (11). pp. 5362-5368. ISSN 0002-7863 doi: 10.1021/ja300050x <http://dx.doi.org/10.1021/ja300050x> |
Idioma(s) |
en en |
Publicador |
American Chemical Society |
Relação |
http://centaur.reading.ac.uk/27638/ creatorInternal Greenland, Barny creatorInternal Burattini, Stefano creatorInternal Hayes, Wayne creatorInternal Colquhoun, Howard http://pubs.acs.org/doi/abs/10.1021/ja300050x 10.1021/ja300050x |
Tipo |
Article PeerReviewed |