883 resultados para high density lipoprotein
Resumo:
Optimisation of Organic Rankine Cycles (ORCs) for binary-cycle geothermal applications could play a major role in the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration. Due to the temperature differences in geothermal resources a one-size-fits-all approach to surface power infrastructure is not appropriate. Furthermore, the traditional use of steam as a working fluid does not seem practical due to the low temperatures of many resources. A variety of organic fluids with low boiling points may be utilised as ORC working fluids in binary power cycle loops. Due to differences in thermodynamic properties, certain fluids are able to extract more heat from a given resource than others over certain temperature and pressure ranges. This enables the tailoring of power cycle infrastructure to best match the geothermal resource through careful selection of the working fluid and turbine design optimisation to yield the optimum overall cycle performance. This paper presents the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow turbines based on a selection of promising ORC cycles using five different high-density working fluids: R134a, R143a, R236fa, R245fa and n-Pentane at sub- or trans-critical conditions. Numerous studies published compare a variety of working fluids for various ORC configurations. However, there is little information specifically pertaining to the design and implementation of ORCs using realistic radial turbine designs in terms of pressure ratios, inlet pressure, rotor size and rotational speed. Preliminary 1D analysis leads to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139289 mm rotor diameter). The highest performing cycle (R134a) was found to produce 33% more net power from a 150°C resource flowing at 10 kg/s than the lowest performing cycle (n-Pentane).
Resumo:
Australia’s urban form and planning has shifted from traditional individual dwellings on spacious suburban blocks towards higher density urban consolidation. Despite relatively strong market demand for inner city high density (ICHD) living, there is ongoing need to explore and understand the aspects that make this urban form liveable and sustainable. The purpose of this research is to explore the viewpoints of current ICHD residents to better understand the liveability and sustainability matters that affect their everyday experiences and perceptions of this urban form. Qualitative interviews with 24 ICHD Brisbane (Australia) residents illustrates their perceptions and experiences of liveability and the ways in which it is broadly understood within three main domains and nine key sub-concepts, including: individual dwelling (thermal comfort, natural light and balconies, noise mitigation), building complex (shared space, good neighbour protocols, environmental sustainability) and the community (transport, amenities, sense of community). Focussing on the experience of ICHD residents, this research highlights the ways in which multiple aspects of the immediate living environment, the dwelling, building complex and the community intertwine to provide residents with a liveable space. The results show that urban features that reflect current societal pressure for greater sustainability such as lower energy use are the exact same features sought by ICHD residents in determining their liveability. By highlighting the aspects current ICHD residents value most about their dwellings, buildings and communities, these findings will help inform policy-makers, planners, developers and designers as they create urban spaces and dwellings that are more liveable and sustainable.
Resumo:
In this study, a treatment plan for a spinal lesion, with all beams transmitted though a titanium vertebral reconstruction implant, was used to investigate the potential effect of a high-density implant on a three-dimensional dose distribution for a radiotherapy treatment. The BEAMnrc/DOSXYZnrc and MCDTK Monte Carlo codes were used to simulate the treatment using both a simplified, recltilinear model and a detailed model incorporating the full complexity of the patient anatomy and treatment plan. The resulting Monte Carlo dose distributions showed that the commercial treatment planning system failed to accurately predict both the depletion of dose downstream of the implant and the increase in scattered dose adjacent to the implant. Overall, the dosimetric effect of the implant was underestimated by the commercial treatment planning system and overestimated by the simplified Monte Carlo model. The value of performing detailed Monte Carlo calculations, using the full patient and treatment geometry, was demonstrated.
Resumo:
The Low-Density Lipoprotein Receptor (LDLR) gene is a cell surface receptor that plays an important role in cholesterol homeostasis. We investigated the (TA)n polymorphism in exon 18 of the LDLR gene on chromosome 19p13.2 performing an association analysis in 244 typical migraine-affected patients, 151 suffering from migraine with aura (MA), 96 with migraine without aura (MO) and 244 unaffected controls. The populations consisted of Caucasians only, and controls were age- and sex-matched. The results showed no significant difference between groups for allele frequency distributions of the (TA)n polymorphism even after separation of the migraine-affected individuals into subgroups of MA and MO affected patients. This is in contradiction to Mochi et al. who found a positive association of this variant with MO. Our study discusses possible differences between the two studies and extends this research by investigating circulating cholesterol levels in a migraine-affected population.
Resumo:
RFLPs at the low density lipoprotein receptor locus (LDLR) display marked linkage disequilibrium between each other. Cross-sectional analysis of a bi-alleleic ApaLI RFLP of LDLR showed that the 9.4- and 6.6-kb alleles were present in similar frequency between a group of 84 Caucasian essential hypertensive (HT) and a group of 96 normotensive subjects whose parents each had a similar blood pressure status at age > or = 50. After subdividing HTs into lean and obese, however, the frequency of the 6.6-kb allele in the 27 HTs with BMI > or = 26 kg/m2 was 0.63, compared with 0.39 for HTs with BMI < 26 (chi 2 = 8.8; P = 0.004). The difference in genotype frequencies was even more striking (chi 2 = 23; P = 0.00008), with a virtual absence of 9.4-kb homozygotes in the obese HT group (1 vs 22). Genetic variation at LDLR (19p13.2) is thus associated with obesity in HT.
Resumo:
OBJECTIVE To determine whether a microsatellite polymorphism located towards the 3' end of the low density lipoprotein receptor gene (LDLR) is associated with obesity. DESIGN A cross-sectional case-control study. SUBJECTS One hundred and seven obese individuals, defined as a body mass index (BMI) ≤ 26 kg/m2, and 163 lean individuals, defined as a BMI < 26 kg/m2. MEASUREMENTS BMI, blood pressure, serum lipids, alleles of LDLR microsatellite (106 bp, 108 bp and 112 bp). RESULTS There was a significant association between variants of the LDLR microsatellite and obesity, in the overall tested population, due to a contributing effect in females (χ2 = 12.3, P = 0.002), but not in males (χ2 = 0.3, P = 0.87). In females, individuals with the 106 bp allele were more likely to be lean, while individuals with the 112 bp and/or 108 bp alleles tended to be obese. CONCLUSIONS These results suggest that in females, LDLR may play a role in the development of obesity.
Resumo:
Obese (BMI ≥ 26 kg/m 2; n = 51) and lean (BMI <26 kg/m 2; n = 61) Caucasian patients with severe, familial essential hypertension, were compared with respect to genotype and allele frequencies of a HincII RFLP of the low density lipoprotein receptor gene (LDLR). A similar analysis was performed in obese (n = 28) and lean (n = 68) normotensives. A significant association of the C allele of the T→C variant responsible for this RFLP was seen with obesity (χ 2 = 4.6, P = 0.029) in the hypertensive, but not in the normotensive, group (odds ratio = 3.0 for the CC genotype and 2.7 for CT). Furthermore, BMI tracked with genotypes of this allele in the hypertensives (P = 0.046). No significant genotypic relationship was apparent for plasma lipids. Significant linkage disequilibrium was, moreover, noted between the HincII RFLP and an ApaLI RFLP (χ 2 = 33, P<0.0005) that has previously shown even stronger association with obesity (odds ratio 19.6 for cases homozygous for the susceptibility allele and 15.2 for het-erozygotes). The present study therefore adds to our previous evidence implicating LDLR as a locus for obesity in patients with essential hypertension.
Resumo:
As of June 2009, 361 genome-wide association studies (GWAS) had been referenced by the HuGE database. GWAS require DNA from many thousands of individuals, relying on suitable DNA collections. We recently performed a multiple sclerosis (MS) GWAS where a substantial component of the cases (24%) had DNA derived from saliva. Genotyping was done on the Illumina genotyping platform using the Infinium Hap370CNV DUO microarray. Additionally, we genotyped 10 individuals in duplicate using both saliva- and blood-derived DNA. The performance of blood- versus saliva-derived DNA was compared using genotyping call rate, which reflects both the quantity and quality of genotyping per sample and the “GCScore,” an Illumina genotyping quality score, which is a measure of DNA quality. We also compared genotype calls and GCScores for the 10 sample pairs. Call rates were assessed for each sample individually. For the GWAS samples, we compared data according to source of DNA and center of origin. We observed high concordance in genotyping quality and quantity between the paired samples and minimal loss of quality and quantity of DNA in the saliva samples in the large GWAS sample, with the blood samples showing greater variation between centers of origin. This large data set highlights the usefulness of saliva DNA for genotyping, especially in high-density single-nucleotide polymorphism microarray studies such as GWAS.
Resumo:
Aim The aim of this study was to explore the social networks of community and its connection to location for older people living in inner city high density (ICHD). Method Using a case study approach employing qualitative (diaries, in-depth interviews) and quantitative (global positioning systems and geographical information systems mapping) methods, this paper explores the everyday interaction and social networks and where they manifest spatially for a group of older ICHD Australians. Results Social networks in two community territories were found to be of particular importance to participants in terms of influencing feelings of well-being, support, social inclusion and cohesion. These two territories include the building where older people reside and the area immediately surrounding the building. Conclusion This study highlights the importance of recognising the spatial aspect to better understand the social networks of community and their effects on well-being and social cohesion for ICHD older people.
Resumo:
The purpose of this study was to determine the threshold of exercise energy expenditure necessary to change blood lipid and lipoprotein concentrations and lipoprotein lipase activity (LPLA) in healthy, trained men. On different days, 11 men (age, 26.7 +/- 6.1 yr; body fat, 11.0 +/- 1.5%) completed four separate, randomly assigned, submaximal treadmill sessions at 70% maximal O-2 consumption. During each session 800, 1,100, 1,300, or 1,500 kcal were expended. Compared with immediately before exercise, high-density lipoprotein cholesterol (HDL-C) concentration was significantly elevated 24 h after exercise (P < 0.05) in the 1,100-, 1,300-, and 1,500-kcal sessions. HDL-C concentration was also elevated (P < 0.05) immediately after and 48 h after exercise in the 1,500-kcal session. Compared with values 24 h before exercise, LPLA. was significantly greater (P < 0.05) 24 h after exercise in the 1,100-, 1,300-, and 1,500-kcal sessions and remained elevated 48 h after exercise in the 1,500-kcal session. These data indicate that, in healthy, trained men, 1,100 kcal of energy expenditure are necessary to elicit increased HDL-C concentrations. These HDL-C changes coincided with increased LPLA.
Resumo:
The purpose of this study was to examine the effect of prolonged exercise oil plasma lipid and lipoprotein concentrations and to identify caloric time-points where changes occurred. Eleven active male Subjects ran oil a treadmill at 70%,, of maximal fitness (VO2max) and expended 6 278.7 kilojoules (Kj) energy (1500 kcal). Blood samples were obtained at the 4185.8 Kj (1000 kcal) time-point during exercise and at each additional 418.6 Kj (100 kcal) expenditure until 6278.7 Kj was expended. After correcting for plasma volume changes, decreases in low-density lipoprotein cholesterol (LDL-C) were observed during exercise at time-points corresponding to 4604.4 and 5441.5 Kj (1100 and 1300 kcal) of energy expenditure, and immediately after exercise. Total cholesterol concentrations decreased significantly at exercise kilojoule expenditures of 4604.4, 5441.5 and 5860.1 (1100, 1300 and 1400 kcal). There were also exercise induced increases in high-density lipoprotein cholesterol (HDL-C) and HDL2-C concentrations immediately after exercise. Although acute lipid and lipoprotein changes are typically reported in the days following exercise, the Current data indicate that some lipoprotein concentrations change during acute exercise. Our data suggest that a threshold of exercise may be necessary to change lipoproteins during exercise. Future work Should identify potential mechanisms (lipoprotein lipase, cholesterol ester transport protein, LDL uptake) that alter lipoprotein concentrations during prolonged exercise.
Resumo:
To overcome major problems associated with insufficient incorporation of nitrogen in hydrogenated amorphous silicon nitride (a-SiNx:H) nanomaterials, which in turn impedes the development of controlled-bandgap nanodevices, here we demonstrate the possibility to achieve effective bandgap control in a broad range by using high-density inductively coupled plasmas. This achievement is related to the outstanding dissociation ability of such plasmas. It is shown that the compositional, structural, optical, and morphological properties of the synthesized a-SiNx:H nanomaterials can be effectively tailored through the manipulation of the flow rate ratio of the silane to nitrogen gases X. In particular, a wide bandgap of 5.21 eV can be uniquely achieved at a low flow rate ratio of the nitrogen to silane gas of 1.0, whereas typically used values often exceed 20.0. These results are highly-relevant to the development of the next-generation nanodevices that rely on the effective control of the functional nano-layer bandgap energies.
Resumo:
A simple, effective and innovative approach based on low-pressure, thermally nonequilibrium, high-density inductively coupled plasmas is proposed to rapidly synthesize Si quantum dots (QDs) embedded in an amorphous SiC (a-SiC) matrix at a low substrate temperature and without any commonly used hydrogen dilution. The experimental results clearly demonstrate that uniform crystalline Si QDs with a size of 3-4 nm embedded in the silicon-rich (carbon content up to 10.7at.%) a-SiC matrix can be formed from the reactive mixture of silane and methane gases, with high growth rates of ∼1.27-2.34 nm s-1 and at a low substrate temperature of 200 °C. The achievement of the high-rate growth of Si QDs embedded in the a-SiC without any commonly used hydrogen dilution is discussed based on the unique properties of the inductively coupled plasma-based process. This work is particularly important for the development of the all-Si tandem cell-based third generation photovoltaic solar cells.
Resumo:
Silicon thin films were synthesized simultaneously on single-crystal silicon and glass substrates by lowpressure, thermally nonequilibrium, high-density inductively coupled plasma-assisted chemical vapor deposition from the silane precursor gas without any additional hydrogen dilution in a broad range of substrate temperatures from 100 to 500 °C. The effect of the substrate temperature on the morphological, structural and optical properties of the synthesized silicon thin films is systematically studied by X-ray diffractometry, Raman spectroscopy, UV-vis spectroscopy, and scanning electron microscopy. It is shown that the formation of nanocrystalline silicon (nc-Si) occurs when the substrate temperature is higher than 200 °C and that all the deposited nc-Si films have a preferential growth along the (111) direction. However, the mean grain size of the (111) orientation slightly and gradually decreases while the mean grain size of the (220) orientation shows a monotonous increase with the increased substrate temperature from 200 to 500 °C. It is also found that the crystal volume fraction of the synthesized nc-Si thin films has a maximum value of ∼69.1% at a substrate temperature of 300 rather than 500 °C. This rather unexpected result is interpreted through the interplay of thermokinetic surface diffusion and hydrogen termination effects. Furthermore, we have also shown that with the increased substrate temperature from 100 to 500 °C, the optical bandgap is reduced while the growth rates tend to increase. The maximum rates of change of the optical bandgap and the growth rates occur when the substrate temperature is increased from 400 to 500 °C. These results are highly relevant to the development of photovoltaic thin-film solar cells, thin-film transistors, and flat-panel displays.