908 resultados para geometric nonlinearity
Resumo:
Two new line clipping algorithms, the opposite-corner algorithm and the perpendicular-distance algorithm, that are based on simple geometric observations are presented. These algorithms do not require computation of outcodes nor do they depend on the parametric representations of the lines. It is shown that the opposite-corner algorithm perform consistently better than an algorithm due to Nicholl, Lee, and Nicholl which is claimed to be better than the classic algorithm due to Cohen-Sutherland and the more recent Liang-Barsky algorithm. The pseudo-code of the opposite-corner algorithm is provided in the Appendix.
Resumo:
Prohibitive test time, nonuniformity of excitation, and signal nonlinearity are major concerns associated with employing dc, sine, and triangular/ramp signals, respectively, while determining static nonlinearity of analog-to-digital converters (ADCs) with high resolution (i.e., ten or more bits). Attempts to overcome these issues have been examined with some degree of success. This paper describes a novel method of estimating the ``true'' static nonlinearity of an ADC using a low-frequency sine signal (for example, less than 10 Hz) by employing the histogram-based approach. It is based on the well-known fact that the variation of a sine signal is ``reasonably linear'' when the angle is small, for example, in the range of +/- 5 degrees to +/- 7 degrees. In the proposed method, the ADC under test has to be ``fed'' with this ``linear'' portion of the sinewave. The presence of any harmonics and offset in input excitation makes this linear part of the sine signal marginally different compared with that of an ideal ramp signal of equal amplitude. However, since it is a sinusoid, this difference can be accurately determined and later compensated from the measured ADC output. Thus, the corrected ADC output will correspond to the true ADC static nonlinearity. The implementation of the proposed method is discussed along with experimental results for two 8-b ADCs and one 10-b ADC which are then compared with the static characteristics estimated by the conventional DC method.
Resumo:
A geometric invariant is associated to the parabolic moduli space on a marked surface and is related to the symplectic structure of the moduli space.
Resumo:
A geometric invariant is associated to the space of fiat connections on a G-bundle over a compact Riemann surface and is related to the energy of harmonic functions.
Resumo:
Zinc oxide ceramic varistors with simplified compositions of ZnO+Bi2O3+Co3O4+M(2)O (M=K or Na) show nonlinearity coefficients (alpha) of 40-75. The electron paramagnetic resonance spectra and optical reflectance spectra show that there is a direct interdependence between the oxidation state of transition metals and the alkali ions. The X-ray photoelectron spectra indicate that the alkali ions preserve a higher oxidation state of cobalt, Co(III), in the grain boundary regions than in the grain interiors having more Co(II). Admittance spectroscopy shows that, while the nature of traps remains unaltered, the trap density increases with the concentration of alkali ions near the interface. The observed defect states are associated with the grain bulk than with the grain boundary interfaces, as indicated by the isothermal capacitance transient signals
Resumo:
In this paper, we present a novel differential geometric characterization of two- and three-degree-of-freedom rigid body kinematics, using a metric defined on dual vectors. The instantaneous angular and linear velocities of a rigid body are expressed as a dual velocity vector, and dual inner product is defined on this dual vector, resulting in a positive semi-definite and symmetric dual matrix. We show that the maximum and minimum magnitude of the dual velocity vector, for a unit speed motion, can be obtained as eigenvalues of this dual matrix. Furthermore, we show that the tip of the dual velocity vector lies on a dual ellipse for a two-degree-of-freedom motion and on a dual ellipsoid for a three-degree-of-freedom motion. In this manner, the velocity distribution of a rigid body can be studied algebraically in terms of the eigenvalues of a dual matrix or geometrically with the dual ellipse and ellipsoid. The second-order properties of the two- and three-degree-of-freedom motions of a rigid body are also obtained from the derivatives of the elements of the dual matrix. This results in a definition of the geodesic motion of a rigid body. The theoretical results are illustrated with the help of a spatial 2R and a parallel three-degree-of-freedom manipulator.
Resumo:
The trans- and cis-stilbenes upon inclusion in NaY zeolite are thermally stable. Direct excitation and triplet sensitization results in geometric isomerization and the excited state behavior under these conditions are similar to that in solution. Upon direct excitation, a photostationary state consisting of 65% cis and 35% trans isomers is established. Triplet sensitization with 2-acetonaphthone gave a photostationary state consisting of 63% cis and 37% trans isomers. These numbers are similar to the ones obtained in solution. Thus, the presence of cations and the confined space within the zeolite have very little influence on the overall chemistry during direct and triplet sensitization. However, upon electron transfer sensitization with N-methylacridinium (NMA) as the sensitizer within NaY, isomerization from cis-stilbene radical cation to trans-stilbene occurs and the recombination of radical ions results in triplet stilbene. Prolonged irradiation gave a photostationary state (65% cis and 35% trans) similar to triplet sensitization. This behavior is unique to the zeolite and does not take place in solution. Steady state fluorescence measurements showed that the majority of stilbene molecules are close to the N-methylacridinium sensitizer. Diffuse reflectance flash photolysis studies established that independent of the isomer being sensitized only trans radical cation is formed. Triplet stilbene is believed to be generated via recombination of stilbene radical cation and sensitizer radical anion. One should be careful in using acidic HY zeolite as a medium for photoisomerization of stilbenes. In our hands, in these acidic zeolites isomerization dominated the photoisomerization. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Through a systematic study of several diphenylcyclopropane derivatives, we have inferred that the cations present within a zeolite control the excited-state chemistry of these systems. In the parent 1,2-diphenylcylopropane, the cation binds to the two phenyl rings in a sandwich-type arrangement, and such a mode of binding prevents cis-to-trans isomerization. Once an ester or amide group is introduced into the system (derivatives of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid), the cation binds to the carbonyl group present in these chromophores and such a binding has no influence on the cis-trans isomerization process. Cation-reactant structures computed at density functional theory level have been very valuable in rationalizing the observed photochemical behavior of diphenylcyclopropane derivatives included in zeolites. While the parent system, 1,2-diphenyleylopropane, has been extensively investigated in the context of chiral induction in solution, owing to its failure to isomerize from cis to trans, the same could not be investigated in zeolites. However, esters of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid could be studied within zeolites in the context of chiral induction. Chiral induction as high 20% ee and 55% de has been obtained with selected systems. These numbers, although low, are much higher than what has been obtained in solution with the same system or with the parent system by other investigators (maximum similar to10% ee).
Resumo:
Depression is associated with increased cardiovascular mortality in patients with preexisting cardiac illness. A decrease in cardiac vagal function as suggested by a decrease in heart rate variability (HRV) or heart period variability has been linked to sudden death in patients with cardiac disease as well as in normal controls. Recent studies have shown decreased vagal function in cardiac patients with depression as well as in depressed patients without cardiac illness. In this study, we compared 20 h awake and sleep heart period nonlinear measures using quantification of nonlinearity and chaos in two groups of patients with major depression and ischemic heart disease (mean age 59-60 years) before and after 6 weeks of treatment with paroxetine or nortriptyline. Patients received paroxetine, 20-30 mg/day or nortriptyline targeted to 190-570 nmol/l for 6 weeks. For HRV analysis, 24 patients were included in the paroxetine treatment study and 20 patients in the nortriptyline study who had at least 20,000 s of awake data. The ages of these groups were 60.4 +/- 10.5 years for paroxetine and 60.8 +/- 13.4 years for nortriptyline. There was a significant decrease in the largest Lyapunov exponent (LLE) after treatment with nortriptyline but not paroxetine. There were also significant decreases in nonlinearity scores on S-netPR and S-netGS after nortriptyline, which may be due to a decrease in cardiac vagal modulation of HRV. S-netGS and awake LLE were the most significant variables that contributed to the discrimination of postparoxetine and postnortriptyline groups even with the inclusion of time and frequency domain measures. These findings suggest that nortriptyline decreases the measures of chaos probably through its stronger vagolytic effects on cardiac autonomic function compared with paroxetine, which is in agreement with previous clinical and preclinical reports. Nortriptyline was also associated with a significant decrease in nonlinearity scores, which may be due to anticholinergic and/or sympatholytic effects. As depression is associated with a strong risk factor for cardiovascular mortality, one should be careful about using any drug that adversely affects cardiac vagal function. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
In this paper, we present a differential-geometric approach to analyze the singularities of task space point trajectories of two and three-degree-of-freedom serial and parallel manipulators. At non-singular configurations, the first-order, local properties are characterized by metric coefficients, and, geometrically, by the shape and size of a velocity ellipse or an ellipsoid. At singular configurations, the determinant of the matrix of metric coefficients is zero and the velocity ellipsoid degenerates to an ellipse, a line or a point, and the area or the volume of the velocity ellipse or ellipsoid becomes zero. The degeneracies of the velocity ellipsoid or ellipse gives a simple geometric picture of the possible task space velocities at a singular configuration. To study the second-order properties at a singularity, we use the derivatives of the metric coefficients and the rate of change of area or volume. The derivatives are shown to be related to the possible task space accelerations at a singular configuration. In the case of parallel manipulators, singularities may lead to either loss or gain of one or more degrees-of-freedom. For loss of one or more degrees-of-freedom, ther possible velocities and accelerations are again obtained from a modified metric and derivatives of the metric coefficients. In the case of a gain of one or more degrees-of-freedom, the possible task space velocities can be pictured as growth to lines, ellipses, and ellipsoids. The theoretical results are illustrated with the help of a general spatial 2R manipulator and a three-degree-of-freedom RPSSPR-SPR parallel manipulator.
Resumo:
Given two independent Poisson point processes ©(1);©(2) in Rd, the AB Poisson Boolean model is the graph with points of ©(1) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centred at these points contains at least one point of ©(2). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d ¸ 2 and derive bounds for a critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and cn in the unit cube. The AB random geometric graph is de¯ned as above but with balls of radius r. We derive a weak law result for the largest nearest neighbour distance and almost sure asymptotic bounds for the connectivity threshold.
Resumo:
Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes on a region in Euclidean space, e.g., the unit square. After deployment, the nodes self-organise into a mesh topology. In a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this paper, we analyse the performance of this approximation. We show that nodes with a certain hop distance from a fixed anchor node lie within a certain annulus with probability approach- ing unity as the number of nodes n → ∞. We take a uniform, i.i.d. deployment of n nodes on a unit square, and consider the geometric graph on these nodes with radius r(n) = c q ln n n . We show that, for a given hop distance h of a node from a fixed anchor on the unit square,the Euclidean distance lies within [(1−ǫ)(h−1)r(n), hr(n)],for ǫ > 0, with probability approaching unity as n → ∞.This result shows that it is more likely to expect a node, with hop distance h from the anchor, to lie within this an- nulus centred at the anchor location, and of width roughly r(n), rather than close to a circle whose radius is exactly proportional to h. We show that if the radius r of the ge- ometric graph is fixed, the convergence of the probability is exponentially fast. Similar results hold for a randomised lattice deployment. We provide simulation results that il- lustrate the theory, and serve to show how large n needs to be for the asymptotics to be useful.
Resumo:
This paper presents a novel method of representing rotation and its application to representing the ranges of motion of coupled joints in the human body, using planar maps. The present work focuses on the viability of this representation for situations that relied on maps on a unit sphere. Maps on a unit sphere have been used in diverse applications such as Gauss map, visibility maps, axis-angle and Euler-angle representations of rotation etc. Computations on a spherical surface are difficult and computationally expensive; all the above applications suffer from problems associated with singularities at the poles. There are methods to represent the ranges of motion of such joints using two-dimensional spherical polygons. The present work proposes to use multiple planar domain “cube” instead of a single spherical domain, to achieve the above objective. The parameterization on the planar domains is easy to obtain and convert to spherical coordinates. Further, there is no localized and extreme distortion of the parameter space and it gives robustness to the computations. The representation has been compared with the spherical representation in terms of computational ease and issues related to singularities. Methods have been proposed to represent joint range of motion and coupled degrees of freedom for various joints in digital human models (such as shoulder, wrist and fingers). A novel method has been proposed to represent twist in addition to the existing swing-swivel representation.