970 resultados para geometric arrays


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of numerical simulation of plasma-based, porous, template-assisted nanofabrication of Au nanodot arrays on highly-doped silicon taking into account typical electron density of low-temperature plasma of 1017-1018 m-3 and electron temperature of 2-5 eV are reported here. Three-dimensional microscopic topography of ion flux distribution over the outer and inner surfaces of the nanoporous template is obtained via numerical simulation of Au ion trajectories in the plasma sheath, in the close proximity of, and inside the nanopores. It is shown that, by manipulating the electron temperature, the cross-sheath potential drop, and by additionally altering the structure of the nanoporous template, one can control the ion fluxes within the nanopores, and eventually maximize the ion deposition onto the top surface of the developing crystalline Au nanodots (see top panel in the figure). In the same time, this procedure allows one to minimize amorphous deposits on the sidewalls that clutter and may eventually close the nanopores, thus disrupting the nanodot growth process, as it is shown in the bottom panel in the figure on the right.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the details of the numerical model used in simulation of self-organization of nano-islands on solid surfaces in plasma-assisted assembly of quantum dot structures. The model includes the near-substrate non-neutral layer (plasma sheath) and a nanostructured solid deposition surface and accounts for the incoming flux of and energy of ions from the plasma, surface temperature-controlled adatom migration about the surface, adatom collisions with other adatoms and nano-islands, adatom inflow to the growing nano-islands from the plasma and from the two-dimensional vapour on the surface, and particle evaporation to the ambient space and the two-dimensional vapour. The differences in surface concentrations of adatoms in different areas within the quantum dot pattern significantly affect the self-organization of the nano-islands. The model allows one to formulate the conditions when certain islands grow, and certain ones shrink or even dissolve and relate them to the process control parameters. Surface coverage by selforganized quantum dots obtained from numerical simulation appears to be in reasonable agreement with the available experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-density inductively coupled plasma (ICP)-assisted self-assembly of the ordered arrays of various carbon nanostructures (NS) for the electron field emission applications is reported. Carbon-based nano-particles, nanotips, and pyramid-like structures, with the controllable shape, ordering, and areal density are grown under remarkably low process temperatures (260-350 °C) and pressures (below 0.1 Torr), on the same Ni-based catalyst layers, in a DC bias-controlled floating temperature regime. A high degree of positional and directional ordering, elevated sp2 content, and a well-structured graphitic morphology are achieved without the use of pre-patterned or externally heated substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large arrays and networks of carbon nanotubes, both single- and multi-walled, feature many superior properties which offer excellent opportunities for various modern applications ranging from nanoelectronics, supercapacitors, photovoltaic cells, energy storage and conversation devices, to gas- and biosensors, nanomechanical and biomedical devices etc. At present, arrays and networks of carbon nanotubes are mainly fabricated from the pre-fabricated separated nanotubes by solution-based techniques. However, the intrinsic structure of the nanotubes (mainly, the level of the structural defects) which are required for the best performance in the nanotube-based applications, are often damaged during the array/network fabrication by surfactants, chemicals, and sonication involved in the process. As a result, the performance of the functional devices may be significantly degraded. In contrast, directly synthesized nanotube arrays/networks can preclude the adverse effects of the solution-based process and largely preserve the excellent properties of the pristine nanotubes. Owing to its advantages of scale-up production and precise positioning of the grown nanotubes, catalytic and catalyst-free chemical vapor depositions (CVD), as well as plasma-enhanced chemical vapor deposition (PECVD) are the methods most promising for the direct synthesis of the nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An advanced inductively coupled plasma (ICP)-assisted rf magnetron sputtering deposition method is developed to synthesize regular arrays of pear-shaped ZnO nanodots on a thin SiNx buffer layer pre-deposited onto a silicon substrate. It is shown that the growth of ZnO nanodots obey the cubic root-law behavior. It is also shown that the synthesized ZnO nanodots are highly-uniform, controllable by the experimental parameters, and also feature good structural and photoluminescent properties. These results suggest that this custom-designed ICP-based technique is very effective and highly-promising for the synthesis of property- and size-controllable highly-uniform ZnO nanodots suitable for next-generation light emitting diodes, energy storage, UV nanolasers, and other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical graphene nanosheets have advantages over their horizontal counterparts, primarily due to the larger surface area available in the vertical systems. Vertical sheets can accommodate more functional particles, and due to the conduction and optical properties of thin graphene, these structures can find niche applications in the development of sensing and energy storage devices. This work is a combined experimental and theoretical study that reports on the synthesis and optical responses of vertical sheets decorated with gold nanoparticles. The findings help in interpreting optical responses of these hybrid graphene structures and are relevant to the development of future sensing platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antenna arrays are groups of antenna elements spaced in a geometrical pattern. By changing the phase excitation of each element, the array is capable of transmitting electromagnetic waves strongly in a chosen direction with little or no radiation in another direction, thus controlling the array's radiation pattern without physically moving any parts. An antenna array of sub-arrays replaces conventional antenna elements with compact circular arrays with potential for improved performance. This thesis expands on the concept by exploring the development, realisation and operation of an array of subarrays. The overall size of the array essentially remains the same, but the array's performance is improved due to having steerable directive subarrays. The negative effects of strong mutual coupling between closely spaced elements of a subarray are analysed and a number of new solutions for element decoupling are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a comprehensive study of deformation and failure mechanisms in bone at nano- and micro-scale levels. It explores the mechanical behaviour of osteopontin-hydroxyapatite interfaces and mineralized collagen fibril arrays, through atomistic molecular dynamics and finite element simulations. This thesis shows some main factors contributing to the excellent material properties of bone and provides some guidelines for development of new artificial biological materials and medical implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work examined the operation and optimisation of dye-sensitised solar cell arrays, informing ways to improve performance through materials choices and geometrical design. Methods to improve the output of solar arrays under shading by external objects like trees or building were developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, variation in the morphology of the lower pharyngeal element between two Sicilian populations of the rainbow wrasse Coris julis has been explored by the means of traditional morphometrics for size and geometric morphometrics for shape. Despite close geographical distance and probable high genetic flow between the populations, statistically significant differences have been found both for size and shape. In fact, one population shows a larger lower pharyngeal element that has a larger central tooth. Compared to the other population, this population also has medially enlarged lower pharyngeal jaws with a more pronounced convexity of the medial-posterior margin. The results are discussed in the light of a possible more pronounced durophagy of this population.