994 resultados para flufenamate-sensitive electrode


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mercury-sensitive chemically modified graphite paste electrode was constructed by incorporating modified silica gel into a conventional graphite paste electrode. The functional group attached to the (3-chloropropyl) silica gel surface was 2-mercaptoimidazole, giving a new product denoted by 3-(2-thioimidazolyl)propyl silica gel, which is able to complex mercury ions. Mercury was chemically adsorbed on the modified graphite paste electrode containing 3-(2-thioimidazolyl)propyl silica (TIPSG GPE) by immersion in a Hg(II) solution, and the resultant surface was characterized by cyclic and differential pulse anodic stripping voltammetry. One cathodic peak at 0.1 V and other anodic peak at 0.34 V were observed on scanning the potential from -0.1 to 0.8 V (0.01 M KNO3; ν = 2.0 mV s-1 νs. Ag/AgCl). The anodic peak at 0.34 V show an excellent sensitivity for Hg(II) ions in the presence of several foreign ions. A calibration graph covering the concentration range from 0.02 to 2 mg L-1 was obtained. The detection limit was estimated to be 5 μg L-1. The precision for six determinations of 0.05 and 0.26 mg L-1 Hg(II) was 3.0 and 2.5% (relative standard deviation), respectively. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal. 2005 © The Japan Society for Analytical Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrazinamide (Pyrazinecarboxamide-PZA) is a drug that is used to treatment tuberculosis. In the present work, the voltammetric behavior of PZA was studied using a screen-printed modified electrode (SPCE). The modified electrode was constructed using poly-histidine films, and it showed an electrocatalytic effect, thus promoting a decrease in PZA reduction potential and improving the voltammetric response. Cyclic voltammetry and electrochemical impedance spectroscopy techniques have been employed in order to elucidate of the electrodic reaction. The results allowed the proposal that in the PZA reduction, a further chemical reaction occurs that corresponds to a second-order process which is subsequent to the electrode reaction. In addition, a sensitive voltammetric method was developed, and it was successfully applied for PZA determination in human urine samples. The best response was found using SPCE modified with poly-histidine prepared by histidine monomer electropolymerization (SPCE/EPH). The electroanalytical performance of the SPCE/EPH was investigated by linear sweep (LSV), differential pulse (DPV), and square wave voltammetry (SWV). A linear relationship between peak current and PZA concentrations was obtained from 9.0 × 10-7 to 1.0 × 10-4 mol L-1 by using DPV. The limit of detection at 5.7 × 10 -7 mol L-1 was estimated, and a relative standard deviation of the 5.0 × 10-6 mol L-1 of PZA of 10 measurement was 3.7%. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetables were analyzed for total N-nitrosamines (NAs) and the influence of disinfection processes was assessed. Differences in NAs found in cabbage, spinach, and broccoli were determined by square wave voltammetry using a boron-doped diamond electrode. Analysis of samples showed that all samples contained detectable levels of NAs but the results indicated that organic contained less than conventionally grown products. The sum of the total NAs was higher in the cabbage samples, ranging between 2.8-3.1 ppb and lower in broccoli samples at 0.2-1.1 ppb. The method described is simple, rapid, selective, and sensitive. The results suggested that the disinfection process affects the level of NAs, in this manner affecting the level of human exposure to NAs. © 2012 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L- 1 of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s- 1. A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9 × 10- 5 to 1.0 × 10- 3 mol L- 1, with a detection limit of 6.6 × 10- 5 mol L- 1 using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. © 2013 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-cost electrochemical method was developed for the determination of trace-level of methyl parathion (MP) based on the properties of graphite-modified basal plane pyrolytic graphite electrode (graphite-bppg). A combination of graphite-bppg with square-wave voltammetric (SWV) analysis resulted in an original, sensitive and selective electrochemical method for determination of MP pesticide in drinking water. The electrode was constructed and the electrochemical behavior of MP was studied. Immobilization is achieved via film modification from dispersing graphite powder in deionized water and through pipeting a small volume onto the electrode surface allowing the solvent to volatilize. The strong affinity of the graphite modifier for the phosphorous group of the MP allowed the deposition of a significant amount of MP in less than 60 seconds. The cyclic voltammetric results indicate that the graphite-bppg electrode can enhance sensitivity in current intensity towards the quasi-reversible redox peaks of the products of the cathodic reduction of the nitro group at negative potential (peak I = 0.077 V and peak II = –0.062 V) and that the cathodic irreversible peak (peak III = –0.586 V) in comparison with bare bppg electrode and is also adsorption controlled process. Under optimized conditions, the concentration range and detection limit for MP pesticide are respectively 79.0 to 263.3 mmol L-1 and 3.00 mmol L-1. The proposed method was successfully applied to MP determination in drinking water and the performance of this electrochemical sensor has been evaluated in terms of analytical figures of merit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A biomimetic sensor is proposed as a promising new analytical method for determination of norfloxacin (NF) in pharmaceuticals. The sensor was prepared by modifying a glassy carbon electrode surface with a Nafion® membrane doped with poly(copper phthalocyanine) complex [poly-CuPc]. Amperometric measurements carried out with the sensor under an applied potential of -0.05 V vs Ag|AgCl in 0.1 mol L-1 acetic acid containing 1.5 × 10-3 mol L-1 hydrogen peroxide showed a linear response range from 2.0 × 10-4 to 1.2 × 10-3 mol L-1. Selectivity and interference studies were also performed. A sensor response mechanism is proposed, based on the experimental evidence. Recovery studies were carried out using environmental samples, in order to evaluate the sensor’s potential for use with these sample classes. Finally, sensor performance was evaluated using analyses of commercial formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An easy way to determine norepinephrine (NE) in biological fluid using a platinum ultramicroelectrode array (Pt-UMEAs) is described. Issues related to UME electrode surface treatment and characterizations are also addressed. At optimized experimental conditions the dynamic concentration range was 1.0 to 10.0 mu mol?L-1 with a detection limit of 40.5 nmol?L-1. The repeatability of current responses for injections of 5 mu mol?L-1 NE was evaluated to be 4.0?% (n=10). This approach obtained excellent sensitivity, a reliable calibration profile and stable electrochemical response for norepinephrine detection. The content of NE in urine samples without any preconcentration, purification, or pretreatment step, was successfully analyzed by the standard addition method using the Pt-UMEAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background We have previously demonstrated that increased rates of superoxide generation by extra-mitochondrial enzymes induce the activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP) in the livers of hypertriglyceridemic (HTG) mice. The resulting mild uncoupling mediated by mitoKATP protects mitochondria against oxidative damage. In this study, we investigate whether immune cells from HTG mice also present increased mitoKATP activity and evaluate the influence of this trait on cell redox state and viability. Methods Oxygen consumption (Clark-type electrode), reactive oxygen species production (dihydroethidium and H2-DCF-DA probes) and cell death (annexin V, cytocrome c release and Trypan blue exclusion) were determined in spleen mononuclear cells. Results HTG mice mononuclear cells displayed increased mitoKATP activity, as evidenced by higher resting respiration rates that were sensitive to mitoKATP antagonists. Whole cell superoxide production and apoptosis rates were increased in HTG cells. Inhibition of mitoKATP further increased the production of reactive oxygen species and apoptosis in these cells. Incubation with HTG serum induced apoptosis more strongly in WT cells than in HTG mononuclear cells. Cytochrome c release into the cytosol and caspase 8 activity were both increased in HTG cells, indicating that cell death signaling starts upstream of the mitochondria but does involve this organelle. Accordingly, a reduced number of blood circulating lymphocytes was found in HTG mice. Conclusions These results demonstrate that spleen mononuclear cells from hyperlipidemic mice have more active mitoKATP channels, which downregulate mitochondrial superoxide generation. The increased apoptosis rate observed in these cells is exacerbated by closing the mitoKATP channels. Thus, mitoKATP opening acts as a protective mechanism that reduces cell death induced by hyperlipidemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a chemical step resulting in the formation of 5,6-dihydroxyindoline quinone as final product. This oxidation process has also been investigated by vibrational spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the properties of ERP effects elicited by unattended (spatially uncued) objects using a short-lag repetition-priming paradigm. Same or different common objects were presented in a yoked prime-probe trial either as intact images or slightly scrambled (half-split) versions. Behaviourally, only objects in a familiar (intact) view showed priming. An enhanced negativity was observed at parietal and occipito-parietal electrode sites within the time window of the posterior N250 after the repetition of intact, but not split, images. An additional post-hoc N2pc analysis of the prime display supported that this result could not be attributed to differences in salience between familiar intact and split views. These results demonstrate that spatially unattended objects undergo visual processing but only if shown in familiar views, indicating a role of holistic processing of objects that is independent of attention.