964 resultados para first-principles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-Hundred Talent Plan of the Chinese Academy of Sciences;National Science Fund for Distinguished Young Scholars 60925016;National High Technology Research and Development program of China 2009AA034101

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p-type doping is a great challenge for the full utilization of ZnO as short-wavelength optoelectronic material. Due to a large electronegative characteristic of oxygen, the ionization energy of acceptors in ZnO is usually too high. By analyzing the defect wave-function character, we propose several approaches to lower the acceptor ionization energy by codoping acceptors with donor or isovalent atoms. Using the first-principles band-structure method, we show that the acceptor transition energies of V-Zn-O-O can be reduced by introducing F-O next to V-Zn to reduce electronic potential, whereas the acceptor transition energy of N-O-nZn(Zn) (n=1-4) can be reduced if we replace Zn by isovalent Mg or Be to reduce the anion and cation kinetic p-d repulsion, as well as the electronic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic and electronic properties of N-N split interstitial in GaN nanowires have been investigated using first principles calculations. The formation energy calculations show that the N-N interstitial favors substituting an N atom at the surface of the nanowires. The interstitial induces localized states in the band gap of GaN nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the electronic structure and magnetic coupling properties of Gd doped AlN have been investigated using first-principles method. We found that in the AlN:Gd system, due to the s-f coupling allowed by the symmetry, the exchange splitting of the conduction band is much larger than that of the valence band, which makes the electron-mediated ferromagnetism possible in this material. This property is also confirmed by the energy differences between anti-ferromagnetic and ferromagnetic phase for Al14Gd2N16 with different concentrations of electrons (holes), as well as by the calculated exchange constants. The result indicates that Gd-doped AlN is a promising candidate for the applications in future spintronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N-(Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of EST-10, a member of synthetic microporous titanosilicates, was recently determined by an ingenious combination of experimental and simulational techniques. However, the locations of the alkali atoms in the framework remain elusive and its electronic structure is totally unknown. Based on first-principles local density calculations, the possible locations of the alkali atoms are identified and its electronic structure and bonding fully elucidated. ETS-10 is a semiconductor with a direct band gap of 2.33 eV. The Na atoms are likely to locate inside the seven-member ring pore adjacent to the one-dimensional Ti-O-Ti-O- chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and magnetism of eskolaite are studied by using first-principles calculations where the on-site Coulomb interaction and the exchange interaction are taken into account and the LSDA+U method is used.The calculated energies of magnetic configurations are very well fitted by the Heisenberg Hamiltonian with interactions in five neighbour shells; interaction with two nearest neighbours is found to be dominant. The Neel temperature is calculated in the spin-3/2 pair-cluster approximation. It is found that the measurements are in good agreement with for the values of U and J that are close to those obtained within the constrained occupation method.The band gap is of the Mott-Hubbard type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a first-principles-based strategy to predict the macroscopic toughness of a gamma-Ni(Al)/alpha-Al2O3 interface. Density functional theory calculations are used to ascertain energy changes upon displacing the two materials adjacent to the interface, with relaxation conducted over all atoms located within adjoining rows. Traction/displacernent curves are obtained from derivatives of the energy. Calculations are performed in mode I (opening), mode II (shear) and at a phase angle of 45 degrees. The shear calculations are conducted for displacements along < 110 > and < 112 > of the Ni lattice. A generalized interface potential function is used to characterize the results. Initial fitting to both the shear and normal stress results is required to calibrate the unknowns. Thereafter, consistency is established by using the potential to predict other traction quantities. The potential is incorporated as a traction/displacement function within a cohesive zone model and used to predict the steady-state toughness of the interface. For this purpose, the plasticity of the Ni alloy must be known, including the plasticity length scale. Measurements obtained for a gamma-Ni superalloy are used and the toughness predicted over the full range of mode mixity. Additional results for a range of alloys are used to demonstrate the influences of yield strength and length scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a first-principles-based strategy to predict the macroscopic toughness of a gamma-Ni(Al)/alpha-Al2O3 interface. Density functional theory calculations are used to ascertain energy changes upon displacing the two materials adjacent to the interface, with relaxation conducted over all atoms located within adjoining rows. Traction/displacernent curves are obtained from derivatives of the energy. Calculations are performed in mode I (opening), mode II (shear) and at a phase angle of 45 degrees. The shear calculations are conducted for displacements along < 110 > and < 112 > of the Ni lattice. A generalized interface potential function is used to characterize the results. Initial fitting to both the shear and normal stress results is required to calibrate the unknowns. Thereafter, consistency is established by using the potential to predict other traction quantities. The potential is incorporated as a traction/displacement function within a cohesive zone model and used to predict the steady-state toughness of the interface. For this purpose, the plasticity of the Ni alloy must be known, including the plasticity length scale. Measurements obtained for a gamma-Ni superalloy are used and the toughness predicted over the full range of mode mixity. Additional results for a range of alloys are used to demonstrate the influences of yield strength and length scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and magnetic properties of YBa2Fe3O8 have been systematically investigated within the framework of density-functional theory using the standard generalized gradient approximation (GGA) as well as the GGA plus Hubbard U(GGA + U) method. The GGA results show that the G-type antiferromagnetic (AFM) state is preferred among the considered magnetic configurations. The striking ionic character is shown for Y and Ba atoms while very strong hybridization is found between Fe 3d and O 2p orbitals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

KCrF3 has been systematically investigated by using the full-potential linearized augmented plane wave plus local orbital method within the generalized gradient approximation and the local spin density approximation plus the on-site Coulomb repulsion approach. The total energies for ferromagnetic and three different antiferromagnetic configurations are calculated in the high-temperature tetragonal and low-temperature monoclinic phases, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and mechanical properties of 5d transition metal mononitrides from LaN to AuN are systematically investigated by use of the density-functional theory. For each nitride, Six Structures are considered, i.e., rocksalt, zinc blende, CsCl, wurtzite, NiAs and WC structures. Among the considered structures, rocksalt structure is the most stable for LaN, HfN and ALIN, WC structure for TaN, NiAs structure for WN, wurtzite structure for ReN, OsN, IrN and PtN. The most stable Structure for each nitride is mechanically stable. The formation enthalpy increases from LaN to AuN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First principles calculations were performed to study the structural, electronic and mechanical properties of hypothetical rhenium dinitride ReN2 for various space groups. It was found that cubic Fm-3m and Pa-3, tetragonal P4(2)/mnm, and orthorhombic Pmmn structures are mechanically stable and metallic. P4(2)/mnm structure is thermodynamically stable at ambient conditions and up to 76 GPa. It has the shortest Re-N bond (1.964 angstrom).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the structural stability and electronic properties of ordered perovskite-type compounds Ba2MIrO6 (M = La, Y) by use of density functional theory. Cubic (Fm-3m), rhombohedral (R-3) and monoclinic (P2(1)/n) phases are considered for each compound. It was found that the most energetically stable phase for Ba2YIrO6 and Ba2LaIrO6 is P2(1)/n andR-3, respectively. It is also interesting to find that Ba2YIrO6 in R-3 phase, which was not reported in experiment, has a slightly lower energy than experimentally observed cubic Fm-3m phase.