970 resultados para energy industry
Resumo:
Renewable energy technologies have long-term economic and environmental advantages over fossil fuels, and solar power is the most abundant renewable resource, supplying 120 PW over earth’s surface. In recent years the cost of photovoltaic modules has reached grid parity in many areas of the world, including much of the USA. A combination of economic and environmental factors has encouraged the adoption of solar technology and led to an annual growth rate in photovoltaic capacity of 76% in the US between 2010 and 2014. Despite the enormous growth of the solar energy industry, commercial unit efficiencies are still far below their theoretical limits. A push for thinner cells may reduce device cost and could potentially increase device performance. Fabricating thinner cells reduces bulk recombination, but at the cost of absorbing less light. This tradeoff generally benefits thinner devices due to reduced recombination. The effect continues up to a maximum efficiency where the benefit of reduced recombination is overwhelmed by the suppressed absorption. Light trapping allows the solar cell to circumvent this limitation and realize further performance gains (as well as continue cost reduction) from decreasing the device thickness. This thesis presents several advances in experimental characterization, theoretical modeling, and device applications for light trapping in thin-film solar cells. We begin by introducing light trapping strategies and discuss theoretical limits of light trapping in solar cells. This is followed by an overview of the equipment developed for light trapping characterization. Next we discuss our recent work measuring internal light scattering and a new model of scattering to predict the effects of dielectric nanoparticle back scatterers on thin-film device absorption. The new model is extended and generalized to arbitrary stacks of stratified media containing scattering structures. Finally, we investigate an application of these techniques using polymer dispersed liquid crystals to produce switchable solar windows. We show that these devices have the potential for self-powering.
Resumo:
The current study approaches the sugarcane culture expansion in Southwestern Goiás, especially in Mineiros, Quirinópolis and Rio Verde counties, which represent different times and responses to this process. The current logistics structure and future prospects for sugarcane and its derivatives transportation are studied at national level with emphasis to the aforementioned micro-region. Maps showing land use and land cover in three different years were generated from Landsat TM-5 satellite images and they were used to analyze the dynamics of changes in land use and in land cover. The region is marked by strong and rapid growth in the agricultural sector and its sugar-energy industry has been expanding in recent years, although with different aspects among its counties. Since it is a promising region in this sector, due to the favorable soil and weather conditions to the crop, the region requires more investment and planning in logistics to ensure production flow and to make it stronger within domestic and foreign markets.
Resumo:
This paper presents a case study of heat exchanger network (HEN) retrofit with the objective to reduce the utilities consumption in a biodiesel production process. Pinch analysis studies allow determining the minimum duty utilities as well the maximum of heat recovery. The existence of heat exchangers for heat recovery already running in the process causes a serious restriction for the implementation of grassroot HEN design based on pinch studies. Maintaining the existing HEN, a set of alternatives with additional heat exchangers was created and analysed using some industrial advice and selection criteria. The final proposed solution allows to increase the actual 18 % of recovery heat of the all heating needs of the process to 23 %, with an estimated annual saving in hot utility of 35 k(sic)/y.
Resumo:
Enterprise and Work Innovation Studies,6,IET, pp.9-51
Resumo:
Audit report on the American Recovery and Reinvestment Act (ARRA) - Program of Competitive Grants for Worker Training and Placement in High Growth and Emerging Industry Sectors program for the Iowa Green Renewable Electrical Energy Network Inc. (IGREEN) for the year ended June 30, 2012
Resumo:
Traditionally, fossil fuels have always been the major sources of the modern energy production. However prices on these energy sources have been constantly increasing. The utilization of local biomass resources for energy production can substitute significant part of the required energy demand in different energy sectors. The introduction of the biomass usage can easily be started in the forest industry first as it possesses biomass in a large volume. The forest industry energy sector has the highest potential for the fast bioenergy development in the North-West Russia. Therefore, the question concerning rational and effective forest resources use is important today as well as the utilization of the forestry by-products. This work describes and analyzes the opportunities of utilising biomass, mainly, in the form of the wood by-products, for energy production processes in general, as well as for the northwest Russian forest industry conditions. The study also covers basic forest industry processes and technologies, so, the reader can get familiar with the information about the specific character of the biomass utilization. The work gives a comprehensive view on the northwest forest industry situation from the biomass utilisation point of view. By presenting existing large-scale sawmills and pulp and paper mills the work provides information for the evaluation of the future development of CHP investments in the northwest Russian forest industry.
Resumo:
The objective of the research was to understand the success factors of the Danish energy service industry. The research phenomenon was studied greatly but the aim was to examine it from the service logic point of view. The research was threefold and it examined the phenomena from the company, industrial and national levels. The purpose of the multi-level study was to understand all the success factors and to examine how they are combined together. First, the research problem was approached through the literature review. After that, the empirical part of the study was conducted as a case study and the data was collected by theme interviews. The collected data was analyzed through theoretical point of view and compared with earlier studies. This study shows that the most important success factor was the country, because it has affected to the other aspects of the success. Because the actors of the industry are linked together tightly, communication and common understanding of business is essential to the industry success. The new energy technologies do not produce directly added value for the customers. This has sifted energy business towards service business, and the customers have been included in the value creation process.
Resumo:
The issue of energy efficiency is attracting more and more attention of academia, business and policy makers worldwide due to increasing environmental concerns, depletion of non-renewable energy resources and unstable energy prices. The significant importance of energy efficiency within gold mining industry is justified by considerable energy intensity of this industry as well as by the high share of energy costs in the total operational costs. In the context of increasing industrial energy consumption energy efficiency improvement may provide significant energy savings and reduction of CO2 emission that is highly important in order to contribute to the global goal of sustainability. The purpose of this research is to identify the ways of energy efficiency improvement relevant for a gold mining company. The study implements single holistic case study research strategy focused on a Russian gold mining company. The research involves comprehensive analysis of company’s energy performance including analysis of energy efficiency and energy management practices. This study provides following theoretical and managerial contributions. Firstly, it proposes a methodology for comparative analysis of energy performance of Russian and foreign gold mining companies. Secondly, this study provides comprehensive analysis of main energy efficiency challenges relevant for a Russian gold mining company. Finally, in order to overcome identified challenges this research conceives a guidance for a gold mining company for implementation of energy management system based on the ISO standard.
Resumo:
Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries
Resumo:
Incluye Bibliografía