949 resultados para elliptical core non-hexagonal symmetry
Resumo:
"March 5, 1969."
Resumo:
This paper addresses the issues of what core competencies mean in the light of the earlier existing concept of distinctive manufacturing competencies (or manufacturing competencies). The apparent parallels bel ween these two concepts are highlighted and considered. The results of empirical research comlucled via a survey of UK non-corporate organizations is presented and then analyzed. The results from the investigation lead directly to conclusions about the relevance of these competency concepts to non-corporate, non-multinational organizations.
Resumo:
Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multigroup neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number, 〈Ma2〉, reflects the violence of aspherical motions in the gain layer, and explosive runaway occurs for 〈Ma2〉 ≳ 0.3, corresponding to a reduction of the critical neutrino luminosity by ∼25∼25 per cent compared to 1D. In the light of this theory, progenitor asphericities aid shock revival mainly by creating anisotropic mass flux on to the shock: differential infall efficiently converts velocity perturbations in the progenitor into density perturbations δρ/ρ at the shock of the order of the initial convective Mach number Maprog. The anisotropic mass flux and ram pressure deform the shock and thereby amplify post-shock turbulence. Large-scale (ℓ = 2, ℓ = 1) modes prove most conducive to shock revival, whereas small-scale perturbations require unrealistically high convective Mach numbers. Initial density perturbations in the progenitor are only of the order of Ma2progMaprog2 and therefore play a subdominant role.
Resumo:
The composition of many professional services firms in the Urban Development area has moved away from a discipline specific ‘silo’ structure to a more multidisciplinary environment. The benefits of multidisciplinarity have been seen in industry by providing synergies across many of the related disciplines. Similarly, the Queensland University of Technology, Bachelor of Urban Development degree has sought to broaden the knowledge base of students and achieve a greater level of synergy between related urban development disciplines through the introduction of generic and multidisciplinary units. This study aims to evaluate the effectiveness of delivering core property units in a multidisciplinary context. A comparative analysis has been undertaken between core property units and more generic units offered in a multidisciplinary context from introductory, intermediate and advanced years within the property program. This analysis was based on data collected from course performance surveys, student performance results, a student focus group and was informed by a reflective process from the student perspective and lecturer/ tutor feedback. The study showed that there are many benefits associated with multidisciplinary unit offerings across the QUT Urban Development program particularly in the more generic units. However, these units require a greater degree of management. It is more difficult to organise, teach and coordinate multidisciplinary student cohorts due to a difference in prior knowledge and experience between each of the discipline groups. In addition, the interaction between lecturers/ tutors and the students frequently becomes more limited. A perception exists within the student body that this more limited face to face contact with academic staff is not valuable which may be exacerbated by the quality of complimentary online teaching materials. For many academics, non-attendance at lectures was coupled with an increase in email communication. From the limited data collected during the study there appears to be no clear correlation between large multidisciplinary student classes and student academic performance or satisfaction.
Resumo:
The aim is to review the published scientific literature for studies evaluating nonpharmacological interventions for breathlessness management in patients with lung cancer. The following selection criteria were used to systematically search the literature: studies were to be published research or systematic reviews; they were to be published in English and from 1990 to 2007; the targeted populations were adult patients with dyspnoea/breathlessness associated with lung cancer; and the study reported on the outcomes from use of non-pharmacological strategies for breathlessness. This review retrieved five studies that met all inclusion criteria. All the studies reported the benefits of non-pharmacological interventions in improving breathlessness regardless of differences in clinical contexts, components of programmes and methods for delivery. Analysis of the available evidence suggests that tailored instructions delivered by nurses with sufficient training and supervision may have some benefits over other delivery approaches. Based on the results, non-pharmacological interventions are recommended as effective adjunctive strategies in managing breathlessness for patients with lung cancer. In order to refine such interventions, future research should seek to explore the core components of such approaches that are critical to achieving optimal outcomes, the contexts in which the interventions are most effective, and to evaluate the relative benefits of different methods for delivering such interventions.
Resumo:
Purpose: To investigate the interocular symmetry of optical, biometric and biomechanical characteristics between the fellow eyes of myopic anisometropes. Methods: Thirty-four young, healthy myopic anisometropic adults (≥ 1 D spherical equivalent difference between eyes) without amblyopia or strabismus were recruited. A range of biometric and optical parameters were measured in both eyes of each subject including; axial length, ocular aberrations, intraocular pressure (IOP), corneal topography and biomechanics. Ocular sighting dominance was also measured. Results: Mean absolute spherical equivalent anisometropia was 1.70 ± 0.74 D and there was a strong correlation between the degree of anisometropia and the interocular difference in axial length (r = 0.81, p < 0.001). The more and less myopic eyes displayed a high degree of interocular symmetry for the majority of biometric, biomechanical and optical parameters measured. When the level of anisometropia exceeded 1.75 D, the more myopic eye was more likely to be the dominant sighting eye than for lower levels of anisometropia (p=0.002). Subjects with greater levels of anisometropia (> 1.75 D) also showed high levels of correlation between the dominant and non-dominant eyes in their biometric, biomechanical and optical characteristics. Conclusions: Although significantly different in axial length, anisometropic eyes display a high degree of interocular symmetry for a range of anterior eye biometrics and optical parameters. For higher levels of anisometropia, the more myopic eye tends to be the dominant sighting eye.
Resumo:
The aetiology behind overuse injuries such as stress fractures is complex and multi-factorial. In sporting events where the loading is likely to be uneven (e.g. hurdling and jumps), research has suggested that the frequency of stress fractures seems to favour the athlete’s dominant limb. The tendency for an individual to have a preferred limb for voluntary motor acts makes limb selection a possible factor behind the development of unilateral overuse injuries, particularly when repeatedly used during high loading activities. The event of sprint hurdling is well suited for the study of loading asymmetry as the hurdling technique is repetitive and the limb movement asymmetrical. Of relevance to this study is the high incidence of Navicular Stress Fractures (NSF) in hurdlers, with suggestions there is a tendency for the fracture to develop in the trail leg foot, although this is not fully accepted. The Ground Reaction Force (GRF) with each foot contact is influenced by the hurdle action, with research finding step-to-step loading variations. However, it is unknown if this loading asymmetry extends to individual forefoot joints, thereby influencing stress fracture development. The first part of the study involved a series of investigations using a commercially available matrix style in-shoe sensor system (FscanTM, Tekscan Inc.). The suitability of insole sensor systems and custom made discrete sensors for use in hurdling-related training activities was assessed. The methodology used to analyse foot loading with each technology was investigated. The insole and discrete sensors systems tested proved to be unsuitable for use during full pace hurdling. Instead, a running barrier task designed to replicate the four repetitive foot contacts present during hurdling was assessed. This involved the clearance of a series of 6 barriers (low training hurdles), place in a straight line, using 4 strides between each. The second part of the study involved the analysis of "inter-limb" and "within foot loading asymmetries" using stance duration as well as vertical GRF under the Hallux (T1), the first metatarsal head (M1) and the central forefoot peak pressure site (M2), during walking, running, and running with barrier clearances. The contribution to loading asymmetry that each of the four repetitive foot contacts made during a series of barrier clearances was also assessed. Inter-limb asymmetry, in forefoot loading, occurred at discrete forefoot sites in a non-uniform manner across the three gait conditions. When the individual barrier foot contacts were compared, the stance duration was asymmetrical and the proportion of total forefoot load at M2 was asymmetrical. There were no significant differences between the proportion of forefoot load at M1, compared to M2; for any of the steps involved in the barrier clearance. A case study testing experimental (discrete) sensors during full pace sprinting and hurdling found that during both gait conditions, the trail limb experienced the greater vertical GRF at M1 and M2. During full pace hurdling, increased stance duration and vertical loading was a characteristic of the trail limb hurdle foot contacts. Commercially available in-shoe systems are not suitable for on field assessment of full pace hurdling. For the use of discrete sensor technology to become commonplace in the field, more robust sensors need to be developed.
Resumo:
Boron nitride nanotubes were functionalized by microperoxidase-11 in aqueous media, showing improved catalytic performance due to a strong electron coupling 10 between the active centre of microperoxidase-11 and boron nitride nanotubes. One main application challenge of enzymes as biocatalysts is molecular aggregation in the aqueous solution. This issue is addressed by immobilization of enzymes on solid supports which 15 can enhance enzyme stability and facilitate separation, and recovery for reuse while maintaining catalytic activity and selectivity. The protein-nanoparticle interactions play a key role in bio-nanotechnology and emerge with the development of nanoparticle-protein “corona”. Bio-molecular coronas provide a 20 unique biological identity of nanosized materials.1, 2 As a structural analogue to carbon nanotubes (CNTs), Boron nitride nanotubes have boron and nitrogen atoms distributed equally in hexagonal rings and exhibit excellent mechanical strength, unique physical properties, and chemical stability at high-temperatures. 25 The chemical inertness of BN materials suits to work in hazardous environments, making them an optimal candidate in practical applications in biological and medical field.3, 4
Resumo:
Prescribing errors remain a significant cause of patient harm. Safe prescribing is not just about writing a prescription, but involves many cognitive and decision-making steps. A set of national prescribing competencies for all prescribers (including non-medical) is needed to guide education and training curricula, assessment and credentialing of individual practitioners. We have identified 12 core competencies for safe prescribing which embody the four stages of the prescribing process – information gathering, clinical decision making, communication, and monitoring and review. These core competencies, along with their learning objectives and assessment methods, provide a useful starting point for teaching safe and effective prescribing.
Resumo:
Three strategies for approaching the design and synthesis of non-chemically amplified resists (non-CARs) are presented. These are linear polycarbonates, star polyester-blk-poly(methyl methacrylate) and comb polymers with polysulfone backbones. The linear polycarbonates were designed to cleave when irradiated with 92 eV photons and high Tg alicyclic groups were incorporated into the backbone to increase Tg and etch resistance. The star block copolymers were designed to have a core that is sensitive to 92 eV photons and arms that have the potential to provide properties such as high Tg and etch resistance. Similarly the polysulfone comb polymers were designed to have an easily degradable polymer backbone and comb-arms that impart favorable physical properties. Initial patterning results are presented for a number of the systems.
Resumo:
Non-profit organisations in the aged care sector are currently under pressure from more than just a sheer increase of customers. A need to respond to changing legislative requirements, increased expectations from customers and increasing likelihood of shortage in appropriate experienced staff are also contributing to instability within the sector. This paper will present a longitudinal action research study of a non-profit organisation revisiting its core purpose of providing relevant services and attempting to build a customer-centric method for addressing the current and upcoming change drivers in an Australian aged care context. The study found Design- Led Innovation to be an effective methodology for capturing deep customer insights and conceptualising new business models which address the prevalent change drivers. This paper details a design-led approach to innovation, tailored to a non-profit organisation seeking to better understand its stakeholders and redefine its value offering.