893 resultados para dynamic user behavior


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dieser Dissertation konnten neuartige perfluoralkylierte Membranankersysteme basierend auf Tris(hydroxymehtyl)aminomethan (TRIS) dargestellt werden. Die perfluoralkylierte Ankersysteme mit C4F9-, C6F13- und C8F17-Ketten konnten in Glycolipopeptide des Mucins MUC1 eingebaut und immunologisch evaluiert werden. In allen untersuchten perfluoralkylierten Glycolipopeptiden konnten spezifische Wechselwirkungen mit Antikörpern nachgewiesen werden. Die Immunisierungen von Mäusen mit diesen nicht-natürlichen Verbindungen führten zur Bildung tumorspezifischer Antikörper. Insgesamt sind die Bindungsaffinitäten der gebildeten Antikörper noch zu gering in Bezug auf die Entwicklung effektiver anti-tumor Vakzine. Diese Bindungsaffinitäten könnte jedoch in künftigen Forschungsarbeiten durch die multivalente Präsentation der perfluoralkylierten Antigene in liposomalen Vakzinen verstärkt werden.rnrn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this research is to develop sustainable wood-blend bioasphalt and characterize the atomic, molecular and bulk-scale behavior necessary to produce advanced asphalt paving mixtures. Bioasphalt was manufactured from Aspen, Basswood, Red Maple, Balsam, Maple, Pine, Beech and Magnolia wood via a 25 KWt fast-pyrolysis plant at 500 °C and refined into two distinct end forms - non-treated (5.54% moisture) and treated bioasphalt (1% moisture). Michigan petroleum-based asphalt, Performance Grade (PG) 58-28 was modified with 2, 5 and 10% of the bioasphalt by weight of base asphalt and characterized with the gas chromatography-mass spectroscopy (GC-MS), Fourier Transform Infra-red (FTIR) spectroscopy and the automated flocculation titrimetry techniques. The GC-MS method was used to characterize the Carbon-Hydrogen-Nitrogen (CHN) elemental ratio whiles the FTIR and the AFT were used to characterize the oxidative aging performance and the solubility parameters, respectively. For rheological characterization, the rotational viscosity, dynamic shear modulus and flexural bending methods are used in evaluating the low, intermediate and high temperature performance of the bio-modified asphalt materials. 54 5E3 (maximum of 3 million expected equivalent standard axle traffic loads) asphalt paving mixes were then prepared and characterized to investigate their laboratory permanent deformation, dynamic mix stiffness, moisture susceptibility, workability and constructability performance. From the research investigations, it was concluded that: 1) levo, 2, 6 dimethoxyphenol, 2 methoxy 4 vinylphenol, 2 methyl 1-2 cyclopentandione and 4-allyl-2, 6 dimetoxyphenol are the dominant chemical functional groups; 2) bioasphalt increases the viscosity and dynamic shear modulus of traditional asphalt binders; 3) Bio-modified petroleum asphalt can provide low-temperature cracking resistance benefits at -18 °C but is susceptible to cracking at -24 °C; 3) Carbonyl and sulphoxide oxidation in petroleum-based asphalt increases with increasing bioasphalt modifiers; 4) bioasphalt causes the asphaltene fractions in petroleum-based asphalt to precipitate out of the solvent maltene fractions; 5) there is no definite improvement or decline in the dynamic mix behavior of bio-modified mixes at low temperatures; 6) bio-modified asphalt mixes exhibit better rutting performance than traditional asphalt mixes; 7) bio-modified asphalt mixes have lower susceptibility to moisture damage; 8) more field compaction energy is needed to compact bio-modified mixes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent developments in the area of interactive entertainment have suggested to combine stereoscopic visualization with multi-touch displays, which has the potential to open up new vistas for natural interaction with interactive three-dimensional (3D) applications. However, the question arises how the user interfaces for system control in such 3D setups should be designed in order to provide an effective user experience. In this article we introduce 3D GUI widgets for interaction with stereoscopic touch displays. The design of the widgets was inspired to skeuomorphism and affordances in such a way that the user should be able to operate the virtual objects in the same way as their real-world equivalents. We evaluate the developed widgets and compared them with their 2D counterparts in the scope of an example application in order to analyze the usability of and user behavior with the widgets. The results reveal differences in user behavior with and without stereoscopic display during touch interaction, and show that the developed 2D as well as 3D GUI widgets can be used effectively in different applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recognizing the increasing amount of information shared on Social Networking Sites (SNS), in this study we aim to explore the information processing strategies of users on Facebook. Specifically, we aim to investigate the impact of various factors on user attitudes towards the posts on their Newsfeed. To collect the data, we program a Facebook application that allows users to evaluate posts in real time. Applying Structural Equation Modeling to a sample of 857 observations we find that it is mostly the affective attitude that shapes user behavior on the network. This attitude, in turn, is mainly determined by the communication intensity between users, overriding comprehensibility of the post and almost neglecting post length and user posting frequency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To characterize PubMed usage over a typical day and compare it to previous studies of user behavior on Web search engines. DESIGN: We performed a lexical and semantic analysis of 2,689,166 queries issued on PubMed over 24 consecutive hours on a typical day. MEASUREMENTS: We measured the number of queries, number of distinct users, queries per user, terms per query, common terms, Boolean operator use, common phrases, result set size, MeSH categories, used semantic measurements to group queries into sessions, and studied the addition and removal of terms from consecutive queries to gauge search strategies. RESULTS: The size of the result sets from a sample of queries showed a bimodal distribution, with peaks at approximately 3 and 100 results, suggesting that a large group of queries was tightly focused and another was broad. Like Web search engine sessions, most PubMed sessions consisted of a single query. However, PubMed queries contained more terms. CONCLUSION: PubMed's usage profile should be considered when educating users, building user interfaces, and developing future biomedical information retrieval systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The overarching objective of this dissertation is to uncover why and how individually experienced fits and misfits translate into different outcomes of user behavior and satisfaction and whether these individual fit/misfit outcomes are in line with organizational intent. In search of patterns and possible archetype users in the context of ES PIPs, this dissertation is the first study that specifically links the theoretical concepts of the aggregated individual fit experiences with the individual and organizational outcome of these experiences (i.e. behavioral reaction, user satisfaction, and alignment with organizational intent). The case study’s findings provide preliminary support for four archetype users characterized by specific fit/misfit experience-outcome patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Today P2P faces two important challenges: design of mechanisms to encourage users' collaboration in multimedia live streaming services; design of reliable algorithms with QoS provision, to encourage the multimedia providers employ the P2P topology in commercial live streaming systems. We believe that these two challenges are tightly-related and there is much to be done with respect. This paper analyzes the effect of user behavior in a multi-tree P2P overlay and describes a business model based on monetary discount as incentive in a P2P-Cloud multimedia streaming system. We believe a discount model can boost up users' cooperation and loyalty and enhance the overall system integrity and performance. Moreover the model bounds the constraints for a provider's revenue and cost if the P2P system is leveraged on a cloud infrastructure. Our case study shows that a streaming system provider can establish or adapt his business model by applying the described bounds to achieve a good discount-revenue trade-off and promote the system to the users.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durante la actividad diaria, la sociedad actual interactúa constantemente por medio de dispositivos electrónicos y servicios de telecomunicaciones, tales como el teléfono, correo electrónico, transacciones bancarias o redes sociales de Internet. Sin saberlo, masivamente dejamos rastros de nuestra actividad en las bases de datos de empresas proveedoras de servicios. Estas nuevas fuentes de datos tienen las dimensiones necesarias para que se puedan observar patrones de comportamiento humano a grandes escalas. Como resultado, ha surgido una reciente explosión sin precedentes de estudios de sistemas sociales, dirigidos por el análisis de datos y procesos computacionales. En esta tesis desarrollamos métodos computacionales y matemáticos para analizar sistemas sociales por medio del estudio combinado de datos derivados de la actividad humana y la teoría de redes complejas. Nuestro objetivo es caracterizar y entender los sistemas emergentes de interacciones sociales en los nuevos espacios tecnológicos, tales como la red social Twitter y la telefonía móvil. Analizamos los sistemas por medio de la construcción de redes complejas y series temporales, estudiando su estructura, funcionamiento y evolución en el tiempo. También, investigamos la naturaleza de los patrones observados por medio de los mecanismos que rigen las interacciones entre individuos, así como medimos el impacto de eventos críticos en el comportamiento del sistema. Para ello, hemos propuesto modelos que explican las estructuras globales y la dinámica emergente con que fluye la información en el sistema. Para los estudios de la red social Twitter, hemos basado nuestros análisis en conversaciones puntuales, tales como protestas políticas, grandes acontecimientos o procesos electorales. A partir de los mensajes de las conversaciones, identificamos a los usuarios que participan y construimos redes de interacciones entre los mismos. Específicamente, construimos una red para representar quién recibe los mensajes de quién y otra red para representar quién propaga los mensajes de quién. En general, hemos encontrado que estas estructuras tienen propiedades complejas, tales como crecimiento explosivo y distribuciones de grado libres de escala. En base a la topología de estas redes, hemos indentificado tres tipos de usuarios que determinan el flujo de información según su actividad e influencia. Para medir la influencia de los usuarios en las conversaciones, hemos introducido una nueva medida llamada eficiencia de usuario. La eficiencia se define como el número de retransmisiones obtenidas por mensaje enviado, y mide los efectos que tienen los esfuerzos individuales sobre la reacción colectiva. Hemos observado que la distribución de esta propiedad es ubicua en varias conversaciones de Twitter, sin importar sus dimensiones ni contextos. Con lo cual, sugerimos que existe universalidad en la relación entre esfuerzos individuales y reacciones colectivas en Twitter. Para explicar los factores que determinan la emergencia de la distribución de eficiencia, hemos desarrollado un modelo computacional que simula la propagación de mensajes en la red social de Twitter, basado en el mecanismo de cascadas independientes. Este modelo nos permite medir el efecto que tienen sobre la distribución de eficiencia, tanto la topología de la red social subyacente, como la forma en que los usuarios envían mensajes. Los resultados indican que la emergencia de un grupo selecto de usuarios altamente eficientes depende de la heterogeneidad de la red subyacente y no del comportamiento individual. Por otro lado, hemos desarrollado técnicas para inferir el grado de polarización política en redes sociales. Proponemos una metodología para estimar opiniones en redes sociales y medir el grado de polarización en las opiniones obtenidas. Hemos diseñado un modelo donde estudiamos el efecto que tiene la opinión de un pequeño grupo de usuarios influyentes, llamado élite, sobre las opiniones de la mayoría de usuarios. El modelo da como resultado una distribución de opiniones sobre la cual medimos el grado de polarización. Aplicamos nuestra metodología para medir la polarización en redes de difusión de mensajes, durante una conversación en Twitter de una sociedad políticamente polarizada. Los resultados obtenidos presentan una alta correspondencia con los datos offline. Con este estudio, hemos demostrado que la metodología propuesta es capaz de determinar diferentes grados de polarización dependiendo de la estructura de la red. Finalmente, hemos estudiado el comportamiento humano a partir de datos de telefonía móvil. Por una parte, hemos caracterizado el impacto que tienen desastres naturales, como innundaciones, sobre el comportamiento colectivo. Encontramos que los patrones de comunicación se alteran de forma abrupta en las áreas afectadas por la catástofre. Con lo cual, demostramos que se podría medir el impacto en la región casi en tiempo real y sin necesidad de desplegar esfuerzos en el terreno. Por otra parte, hemos estudiado los patrones de actividad y movilidad humana para caracterizar las interacciones entre regiones de un país en desarrollo. Encontramos que las redes de llamadas y trayectorias humanas tienen estructuras de comunidades asociadas a regiones y centros urbanos. En resumen, hemos mostrado que es posible entender procesos sociales complejos por medio del análisis de datos de actividad humana y la teoría de redes complejas. A lo largo de la tesis, hemos comprobado que fenómenos sociales como la influencia, polarización política o reacción a eventos críticos quedan reflejados en los patrones estructurales y dinámicos que presentan la redes construidas a partir de datos de conversaciones en redes sociales de Internet o telefonía móvil. ABSTRACT During daily routines, we are constantly interacting with electronic devices and telecommunication services. Unconsciously, we are massively leaving traces of our activity in the service providers’ databases. These new data sources have the dimensions required to enable the observation of human behavioral patterns at large scales. As a result, there has been an unprecedented explosion of data-driven social research. In this thesis, we develop computational and mathematical methods to analyze social systems by means of the combined study of human activity data and the theory of complex networks. Our goal is to characterize and understand the emergent systems from human interactions on the new technological spaces, such as the online social network Twitter and mobile phones. We analyze systems by means of the construction of complex networks and temporal series, studying their structure, functioning and temporal evolution. We also investigate on the nature of the observed patterns, by means of the mechanisms that rule the interactions among individuals, as well as on the impact of critical events on the system’s behavior. For this purpose, we have proposed models that explain the global structures and the emergent dynamics of information flow in the system. In the studies of the online social network Twitter, we have based our analysis on specific conversations, such as political protests, important announcements and electoral processes. From the messages related to the conversations, we identify the participant users and build networks of interactions with them. We specifically build one network to represent whoreceives- whose-messages and another to represent who-propagates-whose-messages. In general, we have found that these structures have complex properties, such as explosive growth and scale-free degree distributions. Based on the topological properties of these networks, we have identified three types of user behavior that determine the information flow dynamics due to their influence. In order to measure the users’ influence on the conversations, we have introduced a new measure called user efficiency. It is defined as the number of retransmissions obtained by message posted, and it measures the effects of the individual activity on the collective reacixtions. We have observed that the probability distribution of this property is ubiquitous across several Twitter conversation, regardlessly of their dimension or social context. Therefore, we suggest that there is a universal behavior in the relationship between individual efforts and collective reactions on Twitter. In order to explain the different factors that determine the user efficiency distribution, we have developed a computational model to simulate the diffusion of messages on Twitter, based on the mechanism of independent cascades. This model, allows us to measure the impact on the emergent efficiency distribution of the underlying network topology, as well as the way that users post messages. The results indicate that the emergence of an exclusive group of highly efficient users depends upon the heterogeneity of the underlying network instead of the individual behavior. Moreover, we have also developed techniques to infer the degree of polarization in social networks. We propose a methodology to estimate opinions in social networks and to measure the degree of polarization in the obtained opinions. We have designed a model to study the effects of the opinions of a small group of influential users, called elite, on the opinions of the majority of users. The model results in an opinions distribution to which we measure the degree of polarization. We apply our methodology to measure the polarization on graphs from the messages diffusion process, during a conversation on Twitter from a polarized society. The results are in very good agreement with offline and contextual data. With this study, we have shown that our methodology is capable of detecting several degrees of polarization depending on the structure of the networks. Finally, we have also inferred the human behavior from mobile phones’ data. On the one hand, we have characterized the impact of natural disasters, like flooding, on the collective behavior. We found that the communication patterns are abruptly altered in the areas affected by the catastrophe. Therefore, we demonstrate that we could measure the impact of the disaster on the region, almost in real-time and without needing to deploy further efforts. On the other hand, we have studied human activity and mobility patterns in order to characterize regional interactions on a developing country. We found that the calls and trajectories networks present community structure associated to regional and urban areas. In summary, we have shown that it is possible to understand complex social processes by means of analyzing human activity data and the theory of complex networks. Along the thesis, we have demonstrated that social phenomena, like influence, polarization and reaction to critical events, are reflected in the structural and dynamical patterns of the networks constructed from data regarding conversations on online social networks and mobile phones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los servicios telemáticos han transformando la mayoría de nuestras actividades cotidianas y ofrecen oportunidades sin precedentes con características como, por ejemplo, el acceso ubicuo, la disponibilidad permanente, la independencia del dispositivo utilizado, la multimodalidad o la gratuidad, entre otros. No obstante, los beneficios que destacan en cuanto se reflexiona sobre estos servicios, tienen como contrapartida una serie de riesgos y amenazas no tan obvios, ya que éstos se nutren de y tratan con datos personales, lo cual suscita dudas respecto a la privacidad de las personas. Actualmente, las personas que asumen el rol de usuarios de servicios telemáticos generan constantemente datos digitales en distintos proveedores. Estos datos reflejan parte de su intimidad, de sus características particulares, preferencias, intereses, relaciones sociales, hábitos de consumo, etc. y lo que es más controvertido, toda esta información se encuentra bajo la custodia de distintos proveedores que pueden utilizarla más allá de las necesidades y el control del usuario. Los datos personales y, en particular, el conocimiento sobre los usuarios que se puede extraer a partir de éstos (modelos de usuario) se han convertido en un nuevo activo económico para los proveedores de servicios. De este modo, estos recursos se pueden utilizar para ofrecer servicios centrados en el usuario basados, por ejemplo, en la recomendación de contenidos, la personalización de productos o la predicción de su comportamiento, lo cual permite a los proveedores conectar con los usuarios, mantenerlos, involucrarlos y en definitiva, fidelizarlos para garantizar el éxito de un modelo de negocio. Sin embargo, dichos recursos también pueden utilizarse para establecer otros modelos de negocio que van más allá de su procesamiento y aplicación individual por parte de un proveedor y que se basan en su comercialización y compartición con otras entidades. Bajo esta perspectiva, los usuarios sufren una falta de control sobre los datos que les refieren, ya que esto depende de la voluntad y las condiciones impuestas por los proveedores de servicios, lo cual implica que habitualmente deban enfrentarse ante la disyuntiva de ceder sus datos personales o no acceder a los servicios telemáticos ofrecidos. Desde el sector público se trata de tomar medidas que protejan a los usuarios con iniciativas y legislaciones que velen por su privacidad y que aumenten el control sobre sus datos personales, a la vez que debe favorecer el desarrollo económico propiciado por estos proveedores de servicios. En este contexto, esta tesis doctoral propone una arquitectura y modelo de referencia para un ecosistema de intercambio de datos personales centrado en el usuario que promueve la creación, compartición y utilización de datos personales y modelos de usuario entre distintos proveedores, al mismo tiempo que ofrece a los usuarios las herramientas necesarias para ejercer su control en cuanto a la cesión y uso de sus recursos personales y obtener, en su caso, distintos incentivos o contraprestaciones económicas. Las contribuciones originales de la tesis son la especificación y diseño de una arquitectura que se apoya en un proceso de modelado distribuido que se ha definido en el marco de esta investigación. Éste se basa en el aprovechamiento de recursos que distintas entidades (fuentes de datos) ofrecen para generar modelos de usuario enriquecidos que cubren las necesidades específicas de terceras entidades, considerando la participación del usuario y el control sobre sus recursos personales (datos y modelos de usuario). Lo anterior ha requerido identificar y caracterizar las fuentes de datos con potencial de abastecer al ecosistema, determinar distintos patrones para la generación de modelos de usuario a partir de datos personales distribuidos y heterogéneos y establecer una infraestructura para la gestión de identidad y privacidad que permita a los usuarios expresar sus preferencias e intereses respecto al uso y compartición de sus recursos personales. Además, se ha definido un modelo de negocio de referencia que sustenta las investigaciones realizadas y que ha sido particularizado en dos ámbitos de aplicación principales, en concreto, el sector de publicidad en redes sociales y el sector financiero para la implantación de nuevos servicios. Finalmente, cabe destacar que las contribuciones de esta tesis han sido validadas en el contexto de distintos proyectos de investigación industrial aplicada y también en el marco de proyectos fin de carrera que la autora ha tutelado o en los que ha colaborado. Los resultados obtenidos han originado distintos méritos de investigación como dos patentes en explotación, la publicación de un artículo en una revista con índice de impacto y diversos artículos en congresos internacionales de relevancia. Algunos de éstos han sido galardonados con premios de distintas instituciones, así como en las conferencias donde han sido presentados. ABSTRACT Information society services have changed most of our daily activities, offering unprecedented opportunities with certain characteristics, such as: ubiquitous access, permanent availability, device independence, multimodality and free-of-charge services, among others. However, all the positive aspects that emerge when thinking about these services have as counterpart not-so-obvious threats and risks, because they feed from and use personal data, thus creating concerns about peoples’ privacy. Nowadays, people that play the role of user of services are constantly generating digital data in different service providers. These data reflect part of their intimacy, particular characteristics, preferences, interests, relationships, consumer behavior, etc. Controversy arises because this personal information is stored and kept by the mentioned providers that can use it beyond the user needs and control. Personal data and, in particular, the knowledge about the user that can be obtained from them (user models) have turned into a new economic asset for the service providers. In this way, these data and models can be used to offer user centric services based, for example, in content recommendation, tailored-products or user behavior, all of which allows connecting with the users, keeping them more engaged and involved with the provider, finally reaching customer loyalty in order to guarantee the success of a business model. However, these resources can be used to establish a different kind of business model; one that does not only processes and individually applies personal data, but also shares and trades these data with other entities. From that perspective, the users lack control over their referred data, because it depends from the conditions imposed by the service providers. The consequence is that the users often face the following dilemma: either giving up their personal data or not using the offered services. The Public Sector takes actions in order to protect the users approving, for example, laws and legal initiatives that reinforce privacy and increase control over personal data, while at the same time the authorities are also key players in the economy development that derives from the information society services. In this context, this PhD Dissertation proposes an architecture and reference model to achieve a user-centric personal data ecosystem that promotes the creation, sharing and use of personal data and user models among different providers, while offering users the tools to control who can access which data and why and if applicable, to obtain different incentives. The original contributions obtained are the specification and design of an architecture that supports a distributed user modelling process defined by this research. This process is based on leveraging scattered resources of heterogeneous entities (data sources) to generate on-demand enriched user models that fulfill individual business needs of third entities, considering the involvement of users and the control over their personal resources (data and user models). This has required identifying and characterizing data sources with potential for supplying resources, defining different generation patterns to produce user models from scattered and heterogeneous data, and establishing identity and privacy management infrastructures that allow users to set their privacy preferences regarding the use and sharing of their resources. Moreover, it has also been proposed a reference business model that supports the aforementioned architecture and this has been studied for two application fields: social networks advertising and new financial services. Finally, it has to be emphasized that the contributions obtained in this dissertation have been validated in the context of several national research projects and master thesis that the author has directed or has collaborated with. Furthermore, these contributions have produced different scientific results such as two patents and different publications in relevant international conferences and one magazine. Some of them have been awarded with different prizes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have determined the treadmilling rate of brain microtubules (MTs) free of MT-associated proteins (MAPs) at polymer mass steady state in vitro by using [3H]GTP-exchange. We developed buffer conditions that suppressed dynamic instability behavior by ≈10-fold to minimize the contribution of dynamic instability to total tubulin-GTP exchange. The MTs treadmilled rapidly under the suppressed dynamic instability conditions, at a minimum rate of 0.2 μm/min. Thus, rapid treadmilling is an intrinsic property of MAP-free MTs. Further, we show that tau, an axonal stabilizing MAP involved in Alzheimer’s disease, strongly suppresses the treadmilling rate. These results indicate that tau’s function in axons might involve suppression of axonal MT treadmilling. We describe mathematically how treadmilling and dynamic instability are mechanistically distinct MT behaviors. Finally, we present a model that explains how small changes in the critical tubulin subunit concentration at MT minus ends, caused by intrinsic differences in rate constants or regulatory proteins, could produce large changes in the treadmilling rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A análise dinâmica experimental tem sido amplamente pesquisada como uma ferramenta de avaliação de integridade de estruturas de concreto armado. Existem técnicas de identificação de danos baseadas em propriedades modais como frequências de ressonâncias, deformadas modais, curvaturas modais e amortecimento. Há também técnicas baseadas na não linearidade da resposta dinâmica, que apesar do grande potencial na detecção de danos, têm sido pouco exploradas nos últimos anos. Este trabalho tem por objetivo avaliar a integridade estrutural de vigas de concreto armado através do comportamento da resposta dinâmica. Foram realizados ensaios dinâmicos em duas vigas de concreto armado com 3,5 m de comprimento, 25 cm de largura, 35 cm de altura e idênticas taxas de armaduras, mas configuradas com barras de aço de diferentes diâmetros, 2 ϕ 16 mm e 8 ϕ 8 mm, respectivamente. Tais vigas, inicialmente íntegras, foram submetidas a ciclos de carregamento e descarregamento com intensidades crescentes até atingir a ruptura do elemento. Após cada ciclo, as propriedades dinâmicas foram avaliadas experimentalmente, com o emprego de técnicas de excitação por sinais do tipo aleatório e tipo transiente, respectivamente, visando determinar parâmetros que indiquem a deterioração gradativa do elemento. Nesses ensaios dinâmicos aplicaram-se diferentes amplitudes da força de excitação. Verificou-se que o aumento da amplitude da força dinâmica de excitação provocou reduções nos valores das frequências de ressonância de 1,1% e 2,4%, associadas, respectivamente, às excitações aleatórias e transientes; e um comportamento não linear dos índices de amortecimento, associados às excitações aleatórias, mantendo um crescimento linear com as excitações transientes. Constatou-se, ainda, que os valores das frequências de ressonância decrescem com a redução de rigidez mecânica, diminuída com o aumento do nível de fissuração induzido nos modelos. Já os valores dos índices de amortecimento, após cada ciclo, se comportaram de forma não linear e assumiram diferentes valores, conforme a técnica de excitação empregada. Acredita-se que esta não linearidade está relacionada aos danos provocados no elemento pela solicitação estrutural e, por consequência, ao processo de como a dissipação de energia é empregada no processo de instauração, configuração e propagação das fissuras nos elementos de concreto armado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper an agent-based approach for anomalies monitoring in distributed systems such as computer networks, or Grid systems is proposed. This approach envisages on-line and off-line monitoring in order to analyze users’ activity. On-line monitoring is carried in real time, and is used to predict user actions. Off-line monitoring is done after the user has ended his work, and is based on the analysis of statistical information obtained during user’s work. In both cases neural networks are used in order to predict user actions and to distinguish normal and anomalous user behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Knowing how consumers perceive travel websites can help practitioners better understand consumers’ online requirements. This paper reports the findings of a longitudinal study that investigated the changes and trends in the profile and behavior of online travel-website users in Hong Kong. The profiles of e-buyers and e-browsers in 2009, when compared with those established by prior studies conducted in 2000 and 2007, point in a new direction for practitioners and researchers investigating online travelwebsite user behavior. The results indicated that more middle-aged consumers have become online travel-website users, and that website security and price are perceived to be the most important factors for travel-website use by both e-browsers and e-buyers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MOREIRA, Luciana Moreira; SILVA, Armando Malheiro da. Impacto das tecnologias digitais nas bibliotecas universitarias: reflexões sobre o tema. Informaçao e sociedade: estudos. Joao Pessoa, v.19, n.3, p. 125-132,2009.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08