978 resultados para double Fourier series
Resumo:
The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field-dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6-311 + G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively
Resumo:
A method is presented which allows thermal inertia (the soil heat capacity times the square root of the soil thermal diffusivity, C(h)rootD(h)), to be estimated remotely from micrometeorological observations. The method uses the drop in surface temperature, T-s, between sunset and sunrise, and the average night-time net radiation during that period, for clear, still nights. A Fourier series analysis was applied to analyse the time series of T-s . The Fourier series constants, together with the remote estimate of thermal inertia, were used in an analytical expression to calculate diurnal estimates of the soil heat flux, G. These remote estimates of C(h)rootD(h) and G compared well with values derived from in situ sensors. The remote and in situ estimates of C(h)rootD(h) both correlated well with topsoil moisture content. This method potentially allows area-average estimates of thermal inertia and soil heat flux to be derived from remote sensing, e.g. METEOSAT Second Generation, where the area is determined by the sensor's height and viewing angle. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We present a new sparse shape modeling framework on the Laplace-Beltrami (LB) eigenfunctions. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes by forming a Fourier series expansion. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we propose to filter out only the significant eigenfunctions by imposing l1-penalty. The new sparse framework can further avoid additional surface-based smoothing often used in the field. The proposed approach is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shapes in the normal population. In addition, we show how the emotional response is related to the anatomy of the subcortical structures.
Resumo:
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In the absence of the selective availability, which was turned off on May 1, 2000, the ionosphere can be the largest source of error in GPS positioning and navigation. Its effects on GPS observable cause a code delays and phase advances. The magnitude of this error is affected by the local time of the day, season, solar cycle, geographical location of the receiver and Earth's magnetic field. As it is well known, the ionosphere is the main drawback for high accuracy positioning, when using single frequency receivers, either for point positioning or relative positioning of medium and long baselines. The ionosphere effects were investigated in the determination of point positioning and relative positioning using single frequency data. A model represented by a Fourier series type was implemented and the parameters were estimated from data collected at the active stations of RBMC (Brazilian Network for Continuous Monitoring of GPS satellites). The data input were the pseudorange observables filtered by the carrier phase. Quality control was implemented in order to analyse the adjustment and to validate the significance of the estimated parameters. Experiments were carried out in the equatorial region, using data collected from dual frequency receivers. In order to validate the model, the estimated values were compared with ground truth. For point and relative positioning of baselines of approximately 100 km, the values of the discrepancies indicated an error reduction better than 80% and 50% respectively, compared to the processing without the ionospheric model. These results give an indication that more research has to be done in order to provide support to the L1 GPS users in the Equatorial region.
Resumo:
This paper investigates the feasibility of using an energy harvesting device tuned such that its natural frequency coincides with higher harmonics of the input to capture energy from walking or running human motion more efficiently. The paper starts by reviewing the concept of a linear resonant generator for a tonal frequency input and then derives an expression for the power harvested for an input with several harmonics. The amount of power harvested is estimated numerically using measured data from human subjects. Assuming that the input is periodic, the signal is reconstructed using a Fourier series before being used in the simulation. It is found that although the power output depends on the input frequency, the choice of tuning the natural frequency of the device to coincide with a particular higher harmonic is restricted by the amount of damping that is needed to maximize the amount of power harvested, as well as to comply with the size limit of the device. It is also found that it is not feasible to tune the device to match the first few harmonics when the size of the device is small, because a large amount of damping is required to limit the motion of the mass.
Resumo:
We consider vortices in the nonlocal two-dimensional Gross-Pitaevskii equation with the interaction potential having Lorentz-shaped dependence on the relative momentum. It is shown that in the Fourier series expansion with respect to the polar angle, the unstable modes of the axial n-fold vortex have orbital numbers l satisfying 0 < \l\ < 2\n\, as in the local model. Numerical simulations show that nonlocality slightly decreases the threshold rotation frequency above which the nonvortex state ceases to be the global energy minimum and decreases the frequency of the anomalous mode of the 1-vortex. In the case of higher axial vortices, nonlocality leads to instability against splitting with the creation of antivortices and gives rise to additional anomalous modes with higher orbital numbers. Despite new instability channels with the creation of antivortices, for a stationary solution comprised of vortices and antivortices there always exists another vortex solution, composed solely of vortices, with the same total vorticity but with a lower energy.
Resumo:
Fresh persimmon has a high moisture content (about 85% wet basis) making it highly perishable and requiring adequate drying conditions to obtain an acceptable dehydrated product. Drying kinetics of persimmon cv. Rama Forte was studied in a fixed bed dryer at temperatures ranging from 50 to 80 degreesC and air velocity of 0.8 m/s. Shrinkage during drying was described by a linear correlation with respect to water content. Evaluation of effective diffusivity as a function of moisture content, with undergoing shrinkage during drying was based on Fourier series solution of Fick's diffusion equation. Effective diffusivity values at moisture contents between 0.09 - 4.23 kg water/kg dry matter were found to be in the range of 2.6 x 10(-10) m(2)/s to 5.4 x 10(-10) m(2)/s, and its dependence on air drying temperature was represented by an Arrhenius type equation. Activation energy increased with decreasing water content in persimmons.
Resumo:
Negative dimensional integration method (NDIM) is a technique to deal with D-dimensional Feynman loop integrals. Since most of the physical quantities in perturbative Quantum Field Theory (pQFT) require the ability of solving them, the quicker and easier the method to evaluate them the better. The NDIM is a novel and promising technique, ipso facto requiring that we put it to test in different contexts and situations and compare the results it yields with those that we already know by other well-established methods. It is in this perspective that we consider here the calculation of an on-shell two-loop three point function in a massless theory. Surprisingly this approach provides twelve non-trivial results in terms of double power series. More astonishing than this is the fact that we can show these twelve solutions to be different representations for the same well-known single result obtained via other methods. It really comes to us as a surprise that the solution for the particular integral we are dealing with is twelvefold degenerate.
Resumo:
An alternative formulation for guided electromagnetic fields in grounded chiral slabs is presented. This formulation is formally equivalent to the double Fourier transform method used by the authors to calculate the spectral fields in open chirostrip structures. In this paper, we have addressed the behavior of the electromagnetic fields in the vicinity of the ground plane and at the interface between the chiral substrate and the free space region. It was found that the boundary conditions for the magnetic field, valid for achiral media, are not completely satisfied when we deal with chiral material. Effects of chirality on electromagnetic field distributions and on surface wave dispersion curves were also analyzed.
Resumo:
In this paper a new partial differential equation based method is presented with a view to denoising images having textures. The proposed model combines a nonlinear anisotropic diffusion filter with recent harmonic analysis techniques. A wave atom shrinkage allied to detection by gradient technique is used to guide the diffusion process so as to smooth and maintain essential image characteristics. Two forcing terms are used to maintain and improve edges, boundaries and oscillatory features of an image having irregular details and texture. Experimental results show the performance of our model for texture preserving denoising when compared to recent methods in literature. © 2009 IEEE.
Resumo:
An analytical expansion of the disturbing function arising from direct planetary perturbations on the motion of satellites is derived. As a Fourier series, it allows the investigation of the secular effects of these direct perturbations, as well as of every argument present in the perturbation. In particular, we construct an analytical model describing the evection resonance between the longitude of pericenter of the satellite orbit and the longitude of a planet, and study briefly its dynamic. The expansion developed in this paper is valid in the case of planar and circular planetary orbits, but not limited in eccentricity or inclination of the satellite orbit. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
The dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses is investigated within the framework of the classical driven Morse oscillator. The interaction between the molecule and the laser field described in the dipole formulation is given by the product of a time-dependent external field with a position-dependent permanent dipole function. The effects of changing the spatial range of the dipole function in the classical dissociation dynamics of large ensembles of trajectories are studied. Numerical calculations have been performed for distinct amplitudes and carrier frequencies of the external pulses and also for ensembles with different initial energies. It is found that there exist a set of values of the dipole range for which the dissociation probability can be completely suppressed. The dependence of the dissociation on the dipole range is explained through the examination of the Fourier series coefficients of the dipole function in the angle variable of the free system. In particular, the suppression of dissociation corresponds to dipole ranges for which the Fourier coefficients associated with nonlinear resonances are null and the chaotic region in the phase space is reduced to thin layers. In this context, it is shown that the suppression of dissociation of heteronuclear molecules for certain frequencies of the external field is a consequence of the finite range of the corresponding permanent dipole. © 2013 American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)