893 resultados para discotics, columar liquid crystals, solid-state NMR, liquid crystal engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been an upsurge of interest in the study of organic reactions in the solid state. It is now realised that the crystalline matrix provides an extra-ordinary spatial control on the initiation and progress of these reactions. Electronic and dipolar effects which are important in solution are replaced by structural and geometric effects in solids. These 'spatial' or 'topochemical' aspects are important in understanding the mechanistic details of the reaction. In our laboratory, the thermally induced acyl migration in salicylamides from 0- to N- position in the solid state has been under study (Scheme 1). The structures of the acetyl and benzoyl derivatives (Ia,IIa, Ib and IIb) have been reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular hydrogenation catalysts have been co-entrapped with the ionic liquid [Bmim]NTf(2) inside a silica matrix by a sot-gel method. These catalytic ionogels have been compared to simple catalyst-doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh-doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, and solid state NMR before and after catalysis. The ionogel catalysts were found to be remarkably active, recyclable and resistant to chemical change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit 'Liquid Crystalline Hexabenzocoronenes as Organic Molecular Materials - Synthesis, Characterization and Application' war durch drei Schwerpunkte definiert:1. Verbesserung der Synthese von Hexabenzocoronen Derivaten mit sechsfacher Alkyl-Substitution,2. Entwicklung von molekularen Materialien mit verbesserten Eigenschaften wie zum Beispiel Löslichkeit und Verarbeitbarkeit,3. Einsatz der entwickelten Moleküle in optoelektronischen Bauteilen wie zum Beispiel organischen Solarzellen und Feld-Effekt-Transistoren.Mit Hilfe einer neuen Syntheseroute ist es gelungen Aryl-Aryl und Aryl-Alkyl Kupplungen sehr spät in der Reaktionssequenz von Hexabenzocoronenen einzusetzen. Dies führte zu einer Vielzahl substituierter HBC Derivate. Die Einführung eines Phenyl Spacers zwischen den HBC Kern und die äußeren Alkylketten, wie zum Beispiel in HBC-PhC12, hatte eine Vielzahl positiver Effekte wie dramatisch verbesserte Löslichkeit und Flüssigkristallinität bei Raumtemperatur zur Folge. Die Kombination dieser Phänomene ermöglichte die Bildung hochgeordneter Filme, welche sehr wichtig für den Einsatz in organischen Bauelementen sind. Mit Hilfe von STM Techniken an der Fest-Flüssig Phasengrenze wurden hochgeordnete 2-D Strukturen der HBC Moleküle gefunden. Die Kombination von extrem hoher kolumnarer Ordnung, bestimmt mit Hilfe der Festkörper NMR Spektroskopie, mit einer konstant hohen Ladungsträgerbeweglichkeit, führte zu dem sehr erfolgreichen Einsatz von HBC-PhC12 in organischen Solarzellen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 10 MHz pulsed NMR spectrometer, built using mostly solid state devices, is described. The pulse programmer provides 2-pulse, 3-pulse, saturation burst and Carr-Purcell sequences both in repetitive and manual modes of operation. The transmitter has a maximum power output of ∼ 2 kW with a 75 Ω output impedance termination. The total gain of the receiver system is around 120 dB with a minimum band width of 2 MHz. The recovery time of the receiver is ∼ 7 µsec. A two-channel boxcar integrator capable of working in the single channel, differential and double boxcar modes provides signal to noise ratio improvement. The sensitivity and the linearity of the boxcar integrator are ∼ 2 mV and ∼ 0.1% respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic principles of operation of gas sensors based on solid-state galvanic cells are described. The polarisation of the electrodes can be minimised by the use of point electrodes made of the solid electrolyte, the use of a reference system with chemical potential close to that of the sample system and the use of graded condensed phase reference electrodes. Factors affecting the speed of response of galvanic sensors in equilibrium and non-equilibrium gas mixtures are considered with reference to products of combustion of fossil fuels. An expression for the emf of non-isothermal galvanic sensors and the criterion for the design of temperature compensated reference electrodes for non-isothermal galvanic sensors are briefly outlined. Non-isothermal sensors are useful for the continuous monitoring of concentrations or chemical potentials in reactive systems at high temperatures. Sensors for oxygen, carbon, and alloying elements (Zn and Si) in liquid metals and alloys are discussed. The use of auxiliary electrodes permits the detection of chemical species in the gas phase which are not mobile in the solid electrolyte. Finally, the cause of common errors in galvanic measurements, and tests for correct functioning of galvanic sensors are given. 60 ref.--AA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three different complexes of copper (I) with bridging 1, 2-bis(diphenylphosphino)ethane (dppe), namely [Cu2 (mu-dppe) (CH3CN)6] (ClO4)2 (1), [Cu2 (mu-dppe)2 (CH3 CN)2] (ClO4)2 (2), and [Cu2 (mu-dppe) (dppe)2 (CH3CN)2] (ClO4)2 (3) have been prepared. The structure of [Cu2 (mu-dppe) (dPPe)2 (CH3CH)2] (ClO4)2 has been determined by X-ray crystallography. It crystallizes in the space group PT with a=12.984(6) angstrom, b=13.180(6) angstrom, c=14.001(3) angstrom, alpha=105.23(3), beta=105.60(2), gamma=112.53 (4), V=1944 (3) angstrom3, and Z=1. The structure was refined by least-squares method with R=0.0365; R(w)=0.0451 for 6321 reflections with F0 greater-than-or-equal-to 3 sigma (F0). The CP/MAS P-31 and IR spectra of the complexes have been analysed in the light of available crystallographic data. IR spectroscopy is particularly helpful in identifying the presence of chelating dppe. P-31 chemical shifts observed in solid state are very different from those observed in solution, and change significantly with slight changes in structure. In solution, complex 1 remains undissociated but complexes 2 and 3 undergo extensive dissociation. With a combination of room temperature H-1, Cu-63, and variable temperature P-31 NMR spectra, it is possible to understand the various processes occurring in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115µm and 0.089µm results in freezing into a crystalline phase at volume fraction? of 0.1 and into a glassy state at?=0.2. The functional form of the field autocorrelation functiong (1)(t) for the binary fluid phase is fitted to exp[??(6k 0 2 D eff t)1/2] wherek 0 is the magnitude of the incident light wavevector and? is a parameter inversely proportional to the photon transport mean free pathl*. TheD eff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingD eff was computed using the Mie theory. In the solid (crystal or glass) phase, theg (1)(t) is fitted (only with a moderate success) to exp[??(6k 0 2 W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameter? for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase relations in the system Ca-Pb-O at 1100 K have been determined by equilibrating 18 compositions in the ternary and identifying the phases present in quenched samples by X-ray diffraction and energy dispersive X-ray analysis (EDX). Only one ternary compound Ca2PbO4 was found to be present. The compound coexists with CaO and PbO. The intermetallic compounds Ca2Pb, Ca5Pb3 and CaPb and liquid alloys are in equilibrium with CaO. The standard Gibbs energies of formation of Ca2PbO4 (880 - 1100 K) and Pb3O4 (770 - 910 K) were determined using solid-state cells based on yttria-stabilized zirconia as the solid electrolyte. Pure oxygen gas at 0.1 MPa was used as the reference electrode. For measurements on Ca2PbO4, a novel cell design with three electrodes in series, separated by solid electrolyte membranes, was used to avoid polarization of the electrode containing three solid phases. Two three-phase electrodes were used. The first absorbs the electrochemical flux of oxygen from the reference electrode to the measuring electrode. The other three-phase electrode, which is unaffected by the oxygen flux through the solid electrolyte, is used for electromotive force (EMF) measurement. The results from EMF studies were cross-checked using thermogravimetry (TG) under controlled oxygen partial pressures. The stability of Pb3O4 was investigated using a conventional solid-state cell with RuO2 electrodes. The results can be summarized by the following equations: 2CaO + PbO +1/2O(2) --> Ca2PbO4 Delta(r)G degrees/J mol(-1) = (- 128340 + 93.21 T/K) +/- 200 3PbO + 1/2O(2) --> Pb3O4 Delta(r)G degrees/J mol(-1) = (- 70060 + 77.5 T/K) +/- 150

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of the structural and conformational studies carried out using C-13 CPMAS NMR technique on several glycine and alanine containing peptides in the solid state are reported. The study demonstrates the effects of variations in C-13 chemical shifts due to conformation and hydrogen bonding. The possibility of applying this technique to obtain insight into the conformational characteristics of peptides of unknown structures is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Nd-Pd-O at 1350 K has been established by equilibration of samples representing 13 different compositions and phase identification after quenching by optical and scanning electron microscopy, x-ray diffraction, and energy dispersive analysis of x-rays. The binary oxides PdO and NdO were not stable at 1350 K. Two ternary oxides Nd4PdO7 and Nd2Pd2O5 were identified. Solid and liquid alloys, as well as the intermetallics NdPd3 and NdPd5, were found to be in equilibrium with Nd2O3. Based on the phase relations, three solidstate cells were designed to measure the Gibbs energies of formation of PdO and the two ternary oxides. An advanced version of the solid-state cell incorporating a buffer electrode was used for high-temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MP a as the reference electrode. Electromotive force measurements, conducted from 950 to 1425 K, indicated the presence of a third ternary oxide Nd2PdO4, stable below 1135 (±10) K. Additional cells were designed to study this compound. The standard Gibbs energy of formation of PdO (†f G 0) was measured from 775 to 1125 Kusing two separate cell designs against the primary reference standard for oxygen chemical potential. Based on the thermodynamic information, chemical potential diagrams for the system Nd-Pd-O were also developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New C-13-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the C-13-methyl nucleus and its directly attached C-13 spin in a molecule. In proteins such correlations edit the C-13-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state polymer electrolytes possess high conductivity and have advantages compared with their liquid counterparts. The polyethylene oxide (PEO)-based polymer is a good candidate for this purpose. The PEO/SnCl2/polyaniline composite (PSP composites) at different weight percentages were prepared in anhydrous acetonitrile media. Structural studies were carried out of the prepared composites by X-ray diffraction, Fourier transmission infrared spectroscopy, and surface morphology by scanning electron microscopy. The sigma (dc) was carried out by a two-probe method, and it is found that the conductivity increases with an increase in temperature. The temperature-dependent conductivity of the composites exhibits a typical semi-conducting behavior and hence can be explained by the 1D variable range hopping model proposed by Mott. The electrochemical cell parameters for battery applications at room temperature have also been determined. The samples are fabricated for battery application in the configuration of Na: (PSP): (I-2 + C + sample), and their experimental data are measured using Wagner's polarization technique. The cell parameters result in an open-circuit voltage of 0.83 V and a short-circuit current of 912 mu A for PSP (70:30:10) composite. Hence, these composites can be used in polymer electrolyte studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of new BODIPYs (4-9) with bulky meso-trimethylsilylphenyl substitution were synthesized. The effect of the substituent's position on the emission properties of the BODIPYs was investigated in detail both in solution and solid state. The new BODIPYs exhibit emission in single crystals and in thin films. The logical increment of steric crowding in the compounds resulted in a periodic change in their conformational flexibility as evident from their F-19 NMR spectra, which in turn led to an increase of fluorescence in solution, thin films and single crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic cocrystallization of hydroxybenzoic acids with hexamine using liquid-assisted grinding shows facile solid state interconversion among different stoichiometric variants. The reversible interconversion caused by varying both the acid and base components in tandem is shown to be a consequence of hydrogen-bonded synthon modularity present in all representative crystal structures. Among a total of 11 complexes, three are salts and eight are cocrystals. The insulated synthons appear as conserved tetrameric motifs in the structures, and the mechanism of interconversion is closely monitored by the synthon modularity. The interconversion is consistent with the theoretically computed stabilization energies of all the tetramers found in this series of cocrystals based on atoms in molecule calculations.