961 resultados para diode pumped solid state laser (DPSSL)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lensing effects in diode end-pumped Yb:YAG laser rods and discs are studied. Two mechanisms of refractive-index changes are taken into account, thermal and electronic (due to the difference between the excited- and ground-state Yb polarisabilities), as well as pump-induced deformation of the laser crystal. Under pulsed pumping, the electronic lensing effect prevails over the thermal one in both rods and discs. In rods pumped by a highly focused cw beam, the dioptric power of the electronic lens exceeds that of the thermal lens, whereas in discs steady-state lensing is predominantly due to the thermal mechanism. © 2009 Kvantovaya Elektronika and Turpion Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 32.1 W laser-diode-stack pumped acoustic-optic Q-switched Nd:YVO4 slab laser with hybrid resonator at 1064 nm was demonstrated with the pumping power of 112 W and repetition rate of 40 kHz, the pulse duration was 32.47 ns. The slope efficiency and optical-to-optical efficiency were 37 and 28.7%, respectively. At the repetition rate of 20 kHz and pumping power of 90 W, the average output power and pulse duration were 20.4 W and 20.43 ns, respectively. With the pumping power of 112 W, the beam quality M-2 factors in CW operation were measured to be 1.3 in stable direction and 1.6 in unstable direction.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diode pumped injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved by using the resonance-detection technique in Q-switching operation. The pulsed oscillator laser uses a folded cavity to achieve compact construction. This system operates at 100 Hz and provides over 20 mJ/pulse of single-frequency 1064 nm output. The M-2 values of horizontal and vertical axes are 1.58 and 1.41, respectively. The probability of putting out single-longitudinal-mode pulses is 100%. The 355 nm laser output produced by frequency tripling has a linewidth less than 200 MHz. The laser can run over eight hours continually without mode hopping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report what is believed to be the first demonstration of the laser action of Yb3+ -doped Gd2SiO5 (Yb:GSO) crystal pumped by a 940-nm laser diode at room temperature. The threshold of laser generation is only 0.85 kW/cm(2), which is smaller than the theoretic threshold of Yb:YAG (1.54 kW/cm(2)). The laser wavelength is 1090 mn. With a 2.5% output coupler, the maximum output power is 415 mW under a pump power of 5 W. By using the SESAM, the Q-switched mode locking and CW mode-locked operations are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using a pump recycling configuration, the maximum power of 8.1 W in the wavelength range 1.935-1.938 mu m is generated by a 5-mm long Tm:YAlO3 (4 at. %) laser operating at 18 degrees C with a pump power of 24 W. The highest slope efficiency of 42% is attained, and the pump quantum efficiency is up to 100%. The Tm:YAlO3 laser is employed as a pumping source of singly-doped Ho(l%):GdVO4 laser operating at room temperature, in which continuous wave output power of greater than 0.2 W at 2.05 mu m is achieved with a slope efficiency of 9%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compact femtosecond laser operation of Yb:Gd2SiO5 (Yb:GSO) crystal was demonstrated under high-brightness diode-end-pumping. A semiconductor saturable absorption mirror was used to start passive mode-locking. Stable mode-locking could be realized near the emission bands around 1031, 1048, and 1088 nm, respectively. The mode-locked Yb: GSO laser could be tuned from one stable mode-locking band to another with adjustable pulse durations in the range 1 similar to 100 ps by slightly aligning laser cavity to allow laser oscillations at different central wavelengths. A pair of SF10 prisms was inserted into the laser cavity to compensate for the group velocity dispersion. The mode-locked pulses centered at 1031 nm were compressed to 343 fs under a typical operation situation with a maximum output power of 396 mW. (c) 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the continuous-wave and acousto-optical Q-switched operation of a diode-end-pumped Tm:YAP laser. Continuous-wave output power of 3.5 W at 1.99 mu m was obtained under the absorbed pump power of 14 W. Under Q-switched laser operation, the average output power increased from 1.57 W to 2.0 W, with an absorbed pump power of 12.6 W, as the repetition rate increased from 1 kHz to 10 kHz. The maximum Q-switched pulse energy was 1.57 mJ with a repetition rate of 1 kHz. The minimum pulse width was measured to be about 80 ns, corresponding to a peak power of 19.6 kW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported on a diode end-pumped AO Q-switched Tm:YAP laser at 1937 nm. The average output power was 3.9 W, with a slope efficiency of 29.4% and optical-optical conversion efficiency of 21.6% at a 5-kHz repetition rate. The temperature dependency of the output power and the pulse width at different repetition rates were investigated in details.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a diode-pumped, cryogenic and room temperature operation of a Tm,Ho:YAlO3 (c-cut) laser. In a temperature of 77 K, an optical-optical conversion efficiency of 27% and a slope efficiency of 29% were achieved with the maximum continuous-wave (CW) output power of 5.0 W at 2.13 mu m. Acousto-optic switched operation was performed at pulse repetition frequency (PRF) from 1 kHz to 10 kHz, the highest pulse energy of 3.3 mJ in a pulse duration of 40 ns was obtained. In room temperature (RT), the maximum CW power of Tm,Ho:YAlO3 laser was 160 mW with a slope efficiency of 11% corresponding to the absorbed pump power. (C) 2008 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of ultrashort optical pulses by semiconductor lasers has been extensively studied for many years. A number of methods, including gain-/Q-switching and different types of mode locking, have been exploited for the generation of picosecond and sub-picosecond pulses [1]. However, the shortest pulses produced by diode lasers are still much longer and weaker than those that are generated by advanced mode-locked solid-state laser systems [2]. On the other hand, an interesting class of devices based on superradiant emission from multiple contact diode laser structures has also been recently reported [3]. Superradiance (SR) is a transient quantum optics phenomenon based on the cooperative radiative recombination of a large number of oscillators, including atoms, molecules, e-h pairs, etc. SR in semiconductors can be used for the study of fundamental properties of e-h ensembles such as photon-mediated pairing, non-equilibrium e-h condensation, BSC-like coherent states and related phenomena. Due to the intrinsic parameters of semiconductor media, SR emission typically results in the generation of a high-power optical pulse or pulse train, where the pulse duration can be much less than 1 ps, under optimised bias conditions. Advantages of this technique over mode locking in semiconductor laser structures include potentially shorter pulsewidths and much larger peak powers. Moreover, the pulse repetition rate of mode-locked pulses is fixed by the cavity round trip time, whereas the repetition rate of SR pulses is controlled by the current bias and can be varied over a wide range. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a low-threshold and efficient diode-pumped passively continuous wave (CW) mode-locked Nd:GdVO4 laser with a reflective semiconductor saturable absorber mirror (SESAM). The threshold for the continuous wave was 0.36 W, and it is the lowest threshold for a continuous wave in a passively mode-locked Nd:GdVO4 laser to our knowledge. The maximum average output power of 1.82 W was obtained at a pump power of 6.65 W with a slope efficiency of about 29%. The CW mode-locked pulse duration was measured to be about 10.5 ps with a 116-MHz repetition rate.