973 resultados para degenerate Hopf bifurcation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism for the kinetic instabilities observed in the galvanostatic electro-oxidation of methanol is suggested and a model developed. The model is investigated using stoichiometric network analysis as well as concepts from algebraic geometry (polynomial rings and ideal theory) revealing the occurrence of a Hopf and a saddle-node bifurcation. These analytical solutions are confirmed by numerical integration of the system of differential equations. (C) 2010 American Institute of Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons: 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst [2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan`s root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we investigate several important aspects of the structure theory of the recently introduced quasi-Hopf superalgebras (QHSAs), which play a fundamental role in knot theory and integrable systems. In particular we introduce the opposite structure and prove in detail (for the graded case) Drinfeld's result that the coproduct Delta ' =_ (S circle times S) (.) T (.) Delta (.) S-1 induced on a QHSA is obtained from the coproduct Delta by twisting. The corresponding "Drinfeld twist" F-D is explicitly constructed, as well as its inverse, and we investigate the complete QHSA associated with Delta '. We give a universal proof that the coassociator Phi ' = (S circle times S circle times S) Phi (321) and canonical elements alpha ' = S(beta), beta ' = S(alpha) correspond to twisting, the original coassociator Phi = Phi (123) and canonical elements alpha, beta with the Drinfeld twist F-D. Moreover in the quasi-tri angular case, it is shown algebraically that the R-matrix R ' = (S circle times S)R corresponds to twisting the original R-matrix R with F-D. This has important consequences in knot theory, which will be investigated elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the existence of solutions for a class of abstract degenerate neutral functional differential equations. Some applications to partial differential equations are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By generalizing the Reshetikhin and Semenov-Tian-Shansky construction to supersymmetric cases, we obtain the Drinfeld current realization for the quantum affine superalgebra U-q[gl(m\n)((1))]. We find a simple coproduct for the quantum current generators and establish the Hopf algebra structure of this super current algebra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absence of the horizontal segment of the left portal vein (PV) or absence of bifurcation of the portal vein (ABPV) is extremely rare anomaly. The aim of this study was to study the extra-hepatic PV demonstrating the importance of its careful assessment for the purpose of split-liver transplantation. Human cadaver livers (n = 60) were obtained from routine autopsies. The cutting plane of the liver consisted of a longitudinal section made immediately on the left of the supra-hepatic inferior vena cava through the gallbladder bed preserving the arterial, portal and biliary branches in order to obtain two viable grafts (right lobe-segments V, VI, VII, and VIII and left lobe-segments II, III, and IV) as defined by the main portal scissure. The PV was dissected out and recorded for application of the liver splitting. The PV trunk has been divided into right and left branch in 50 (83.3%) cases. A trifurcation of the PV was found in 9 (15.2%) cases, 3 (5%) was a right anterior segmental PV arising from the left PV and 6 (10%) a right posterior segmental PV arising from the main PV. ABPV occurred in 1 (1.6%) case. Absence of bifurcation of the portal vein is a rare anatomic variation, the surgeon must be cautious and aware of the existence of this exceptional PV anomaly either pre or intra-operatively for the purpose of hepatectomies or even split-liver transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just above threshold. In this region where there are large quantum fluctuations in the conjugate variance and macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond very closely to the semiclassical theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a systematic theory of quantum fluctuations in the driven optical parametric oscillator, including the region near threshold. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction in this nonequilibrium quantum phase transition. In particular, we compute the squeezing spectrum near threshold and calculate the optimum value. We find that the optimal noise reduction occurs at different driving fields, depending on the ratio of damping rates. The largest spectral noise reductions are predicted to occur with a very high-Q second-harmonic cavity. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the Higgs boson data by the ATLAS and CMS Collaborations appears to exhibit an excess of h -> gamma gamma events above the Standard Model (SM) expectations, whereas no significant excess is observed in h -> ZZ* -> four lepton events, albeit with large statistical uncertainty due to the small data sample. These results (assuming they persist with further data) could be explained by a pair of nearly mass-degenerate scalars, one of which is an SM-like Higgs boson and the other is a scalar with suppressed couplings to W+W- and ZZ. In the two-Higgs-doublet model, the observed gamma gamma and ZZ* -> four lepton data can be reproduced by an approximately degenerate CP-even (h) and CP-odd (A) Higgs boson for values of sin (beta - alpha) near unity and 0: 70 less than or similar to tan beta less than or similar to 1. An enhanced gamma gamma signal can also arise in cases where m(h) similar or equal to m(H), m(H) similar or equal to m(A), or m(h) similar or equal to m(H) similar or equal to m(A). Since the ZZ* -> 4 leptons signal derives primarily from an SM-like Higgs boson whereas the gamma gamma signal receives contributions from two (or more) nearly mass-degenerate states, one would expect a slightly different invariant mass peak in the ZZ* -> four lepton and gamma gamma channels. The phenomenological consequences of such models can be tested with additional Higgs data that will be collected at the LHC in the near future. DOI: 10.1103/PhysRevD.87.055009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho estuda-se a geração de trajectórias em tempo real de um robô quadrúpede. As trajectórias podem dividir-se em duas componentes: rítmica e discreta. A componente rítmica das trajectórias é modelada por uma rede de oito osciladores acoplados, com simetria 4 2 Z  Z . Cada oscilador é modelado matematicamente por um sistema de Equações Diferenciais Ordinárias. A referida rede foi proposta por Golubitsky, Stewart, Buono e Collins (1999, 2000), para gerar os passos locomotores de animais quadrúpedes. O trabalho constitui a primeira aplicação desta rede à geração de trajectórias de robôs quadrúpedes. A derivação deste modelo baseia-se na biologia, onde se crê que Geradores Centrais de Padrões de locomoção (CPGs), constituídos por redes neuronais, geram os ritmos associados aos passos locomotores dos animais. O modelo proposto gera soluções periódicas identificadas com os padrões locomotores quadrúpedes, como o andar, o saltar, o galopar, entre outros. A componente discreta das trajectórias dos robôs usa-se para ajustar a parte rítmica das trajectórias. Este tipo de abordagem é útil no controlo da locomoção em terrenos irregulares, em locomoção guiada (por exemplo, mover as pernas enquanto desempenha tarefas discretas para colocar as pernas em localizações específicas) e em percussão. Simulou-se numericamente o modelo de CPG usando o oscilador de Hopf para modelar a parte rítmica do movimento e um modelo inspirado no modelo VITE para modelar a parte discreta do movimento. Variou-se o parâmetro g e mediram-se a amplitude e a frequência das soluções periódicas identificadas com o passo locomotor quadrúpede Trot, para variação deste parâmetro. A parte discreta foi inserida na parte rítmica de duas formas distintas: (a) como um offset, (b) somada às equações que geram a parte rítmica. Os resultados obtidos para o caso (a), revelam que a amplitude e a frequência se mantêm constantes em função de g. Os resultados obtidos para o caso (b) revelam que a amplitude e a frequência aumentam até um determinado valor de g e depois diminuem à medida que o g aumenta, numa curva quase sinusoidal. A variação da amplitude das soluções periódicas traduz-se numa variação directamente proporcional na extensão do movimento do robô. A velocidade da locomoção do robô varia com a frequência das soluções periódicas, que são identificadas com passos locomotores quadrúpedes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um problema em aberto na geração de trajectórias em tempo real de robôs. Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção (CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede. Os CPGs são modelados matematicamente por sistemas acoplados de células (ou neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica, (a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada independentemente e adicionada exactamente antes do envio dos sinais para as articulações do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do sinal após a inclusão da parte discreta. Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5]. Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1), considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5Hopf, a amplitude e a frequência têm o mesmo comportamento, crescendo e diminuindo nos intervalos de g [-0.5,0.34] e [0.4,1.83], sendo nos restantes valores de g nulas. Isto traduz-se em variações na extensão do movimento e na velocidade do robô, proporcionais à amplitude e à frequência, respectivamente. Ainda com o oscilador Hopf, no caso (b), a frequência mantêm-se constante enquanto a amplitude diminui para g<0.2 e aumenta para g>0.2. A extensão do movimento varia de forma directamente proporcional à amplitude. No caso das equações de Morris-Lecar, quando a componente discreta é embebida (a.2), a amplitude e a frequência aumentam e depois diminuem para - 0.170.5 Pode concluir-se que: (1) a melhor forma de inserção da parte discreta que menos perturbação insere no robô é a inserção como offset; (2) a inserção da parte discreta parece ser independente do sistema de equações diferenciais ordinárias que modelam a dinâmica interna de cada célula. Como trabalho futuro, é importante prosseguir o estudo das diferentes formas de inserção da parte discreta na parte rítmica do movimento, para que se possa gerar uma locomoção quadrúpede, robusta, flexível, com objectivos, em terrenos irregulares, modelada por correcções discretas aos padrões rítmicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a simple model for a biaxial nematic liquid crystal. This consists of hard spheroids that can switch shape between prolate (rodlike) and oblate (platelike) subject to an energy penalty Δε. The spheroids are approximated as hard Gaussian overlap particles and are treated at the level of Onsager's second-virial description. We use both bifurcation analysis and a numerical minimization of the free energy to show that, for additive particle shapes, (i) there is no stable biaxial phase even for Δε=0 (although there is a metastable biaxial phase in the same density range as the stable uniaxial phase) and (ii) the isotropic-to-nematic transition is into either one of two degenerate uniaxial phases, rod rich or plate rich. We confirm that even a small amount of shape nonadditivity may stabilize the biaxial nematic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From a narratological perspective, this paper aims to address the theoretical issues concerning the functioning of the so called «narrative bifurcation» in data presentation and information retrieval. Its use in cyberspace calls for a reassessment as a storytelling device. Films have shown its fundamental role for the creation of suspense. Interactive fiction and games have unveiled the possibility of plots with multiple choices, giving continuity to cinema split-screen experiences. Using practical examples, this paper will show how this storytelling tool returns to its primitive form and ends up by conditioning cloud computing interface design.