810 resultados para cycling rats
Green tea attenuates cardiovascular remodelling and metabolic symptoms in high carbohydrate-fed rats
Resumo:
Following isophorone exposure, in a 2-year study with F344 rats and B6C3F1 mice performed under the National Toxicology Program (NTP), an elevated incidence of tumors was observed in male rats (kidney tumors) and male mice (liver tumors). Female rats and mice showed no elevation of tumor rates by isophorone (NTP 1986).
Resumo:
Roundabouts reduce the frequency and severity of motor vehicle crashes and therefore the number installed has increased dramatically in the last 20 years in many countries. However, the safety impacts of roundabouts for bicycle riders are a source of concern, with many studies reporting lower injury reductions for cyclists than car occupants. This paper summarises the results of a project undertaken to provide guidance on how cyclist safety could be improved at existing roundabouts in Queensland, Australia, where cyclist crashes have been increasing and legislation gives motor vehicles priority over cyclists and pedestrians at roundabouts. The review of international roundabout design guidelines identified two schools of design: tangential roundabouts (common in English-speaking countries, including Australia), which focus on minimising delay to motor vehicles, and radial roundabouts (common in continental Europe), which focus on speed reduction and safety. While it might be expected that radial roundabouts would be safer for cyclists, there have been no studies to confirm this view. Most guidelines expect cyclists to act as vehicle traffic in single-lane, typically low-speed, roundabouts. Some jurisdictions do not permit cyclists to travel on multi-lane roundabouts, and recommend segregated bicycle facilities because of their lowest crash risk for cyclists. Given that most bicycle-vehicle crashes at roundabouts involve an entering vehicle and a circulating cyclist, the greatest challenges appear to be reducing the speed of motor vehicles on the approach/entry to roundabouts and other ways of maximizing the likelihood that cyclists will be seen. Lower entry speeds are likely to underpin the greater safety of compact roundabouts for cyclists and, conversely, the higher than expected crash rates at two-lane roundabouts. European research discourages the use of bike lanes in roundabouts which position cyclists at the edge of the road and contributes to cyclists being less likely to be noticed by drivers.
Resumo:
There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine, however, there are questions over the comparability of in vitro biomechanical studies from different research groups due to the various methods used for specimen preparation, testing and data collection. The aim of this study was to identify the effect of two key factors on the stiffness of immature bovine thoracic spine motion segments: (i) repeated cyclic loading and (ii) multiple freeze-thaw cycles, to aid in the planning and interpretation of in vitro studies. Two groups of thoracic spine motion segments from 6-8 week old calves were tested in flexion/extension, right/left lateral bending, and right/left axial rotation under moment control. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 50, 100, 200, 300, 400 and 500. Group (B) were tested after each of five freeze-thaw sequences, with data collected from the 10th load cycle in each sequence. Group A: Flexion/extension stiffness reduced significantly over the 500 load cycles (-22%; P=0.001), but there was no significant change between the 5th and 200th load cycles. Lateral bending stiffness decreased significantly (-18%; P=0.009) over the 500 load cycles, but there was no significant change in axial rotation stiffness (P=0.137). Group B: There was no significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (P=0.813) and a near significant reduction in mean stiffness in axial rotation (-6%; P=0.07). However, there was a statistically significant increase in stiffness in lateral bending (+30%; P=0.007). Comparison of in vitro testing results for immature thoracic bovine spine segments between studies can be performed with up to 200 load cycles without significant changes in stiffness. However, when testing protocols require greater than 200 cycles, or when repeated freeze-thaw cycles are involved, it is important to account for the effect of cumulative load and freeze-thaw cycles on spine segment stiffness.
Resumo:
Over recent years, the health, transport and environment sectors have been increasingly focused on the promotion of transport cycling. From a health perspective, transport cycling is recognised as a beneficial form of physical activity as it can be easily integrated into daily living, is done at an intensity that confers health benefits, and is associated with reductions in mortality and morbidity [1]. From a safety perspective, the risk of a serious cycling injury decreases as cycling increases [2] as having more cyclists on roads increases motor vehicle drivers’ awareness of cyclists and in turn makes cycling safer. Whereas cycling for recreation is the fourth most commonly reported physical activity among Australian adults [3], transport cycling is an underutilised travel mode. Approximately 1.3% of journeys to work in Australia are made by bicycle [4]. This low prevalence is mirrored in the UK and the US, but not in some European countries like the Netherlands and Denmark, where over 18% and 26%, respectively, of all journeys are made by bicycle [5]. In the past decade, concerted efforts have been made by Australian state and local governments to increase cycling rates [6]. Notably, Melbourne, Sydney and Brisbane have implemented policies, increased bicycle commuting infrastructure, and offered information and promotion programs to encourage commuter cycling [6,7]. Governments have also developed comprehensive longterm plans for guiding future cycling strategies, using lessons learned from around the world in developing successful cycling policy and promotion [6,7]. Changes in transport cycling rates in inner cities since these efforts have been implemented are encouraging. In Sydney, census data indicate an 83% increase in the number of people using a bicycle for commuting between 2001 and 2011 [8]. Counts of bicycles being ridden along major cycling commuter routes indicate increases in weekday morning cycling trips in Brisbane (63% increase from 2004 to 2010) [7] and in Melbourne (a 43% increase from 2006 to 2008) [9]. However, bicycle mode share to work has changed little: for example, between 2001 and 2011, it decreased slightly from 1.6% to 1.3% in Brisbane [10,11]. Researchers have been investigating factors that may be contributing to low rates of cycling for transport, to inform future policy and programming to encourage transport cycling. The aim of this paper is to overview our work to date in this area of research in Queensland.
Resumo:
The current study sought to explore whether the subcutaneous administration of lymph-targeted dendrimers, conjugated with a model chemotherapeutic (methotrexate, MTX), was able to enhance anticancer activity against lymph node metastases. The lymphatic pharmacokinetics and antitumour activity of PEGylated polylysine dendrimers conjugated to MTX [D-MTX(OH)] via a tumour-labile hexapeptide linker was examined in rats and compared to a similar system where MTX was α-carboxyl O-tert-butylated [D-MTX(OtBu)]. The latter has previously been shown to exhibit longer plasma circulation times. D-MTX(OtBu) was well absorbed from the subcutaneous injection site via the lymph, and 3 to 4%/g of the dose was retained by sentinel lymph nodes. In contrast, D-MTX(OH) showed limited absorption from the subcutaneous injection site, but absorption was almost exclusively via the lymph. The retention of D-MTX(OH) by sentinel lymph nodes was also significantly elevated (approximately 30% dose/g). MTX alone was not absorbed into the lymph. All dendrimers displayed lower lymph node targeting after intravenous administration. Despite significant differences in the lymph node retention of D-MTX(OH) and D-MTX(OtBu) after subcutaneous and intravenous administration, the growth of lymph node metastases was similarly inhibited. In contrast, the administration of MTX alone did not significantly reduce lymph node tumour growth. Subcutaneous administration of drug-conjugated dendrimers therefore provides an opportunity to improve drug deposition in downstream tumour-burdened lymph nodes. In this case, however, increased lymph node biodistribution did not correlate well with antitumour activity, possibly suggesting constrained drug release at the site of action.
Resumo:
The project applied analytical facilities to characterize the composition and mechanical properties of osteoporosis in maxillary bone using an ovariectomized rat model. It was found that osteoporotic jaw bone contained different amount of trace elements in comparison with the normal bone, which plays a significant role in bone quality. The knowledge generated from the study will assist the treatment of jaw bone fracture and dental implant placement.
Resumo:
Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process
Resumo:
Summary The neonatal period is characterized by significant plasticity where the immune, endocrine, and nociceptive systems undergo fine-tuning and maturation. Painful experiences during this period can result in long-term alterations in the neurocircuitry underlying nociception, including increased sensitivity to mechanical or thermal stimuli. Less is known about the impact of neonatal exposure to mild inflammatory stimuli, such as lipopolysaccharide (LPS), on subsequent inflammatory pain responses. Here we examine the impact of neonatal LPS exposure on inflammatory pain sensitivity and HPA axis activity during the first three postnatal weeks. Wistar rats were injected with LPS (0.05 mg/kg IP, Salmonella enteritidis) or saline on postnatal days (PNDs) 3 and 5 and later subjected to the formalin test at PNDs 7, 13, and 22. One hour after formalin injection, blood was collected to assess corticosterone responses. Transverse spinal cord slices were also prepared for whole-cell patch clamp recording from lumbar superficial dorsal horn neurons (SDH). Brains were obtained at PND 22 and the hypothalamus was isolated to measure glucocorticoid (GR) and mineralocorticoid receptor (MR) transcript expression using qRT-PCR. Behavioural analyses indicate that at PND 7, no significant differences were observed between saline- or LPS-challenged rats. At PND 13, LPS-challenged rats exhibited enhanced licking (p < .01), and at PND 22, increased flinching in response to formalin injection (p < .05). LPS-challenged rats also displayed increased plasma corticosterone at PND 7 and PND 22 (p < .001) but not at PND 13 following formalin administration. Furthermore, at PND 22 neonatal LPS exposure induced decreased levels of GR mRNA and increased levels of MR mRNA in the hypothalamus. The intrinsic properties of SDH neurons were similar at PND 7 and PND 13. However, at PND 22, ipsilateral SDH neurons in LPS-challenged rats had a lower input resistance compared to their saline-challenged counterparts (p < .05). These data suggest neonatal LPS exposure produces developmentally regulated changes in formalin-induced behavioural responses, corticosterone levels, and dorsal horn neuron properties following noxious stimulation later in life. These findings highlight the importance of immune activation during the neonatal period in shaping pain sensitivity later in life. This programming involves both spinal cord neurons and the HPA axis.
Resumo:
Cyclists are among the most vulnerable road users. Many recent interventions have aimed at improving their safety on the road, such as the minimum overtaking distance rule introduced in Queensland in 2014. Smartphones offer excellent opportunities for technical intervention for road safety at a limited cost. Indeed, they have a lot of available processing power and many embedded sensors that allow analysing a rider's (or driver's) motion, behaviour, and environment; this is especially relevant for cyclists, as they do not have the space or power allowance that can be found in most motor vehicles. The aim of the study presented in this paper is to assess cyclists’ support for a range of new smartphone-based safety technologies. The preliminary results for an online survey with cyclists recruited from Bicycle Queensland and Triathlon Queensland, with N=191, are presented. A number of innovative safety systems such as automatic logging of incidents without injuries, reporting of dangerous area via a website/app, automatic notification of emergency services in case of crash or fall, and advanced navigation apps were assessed. A significant part of the survey is dedicated to GoSafeCycle, a cooperative collision prevention app based on motion tracking and Wi-Fi communications developed at CARRS-Q. Results show a marked preference toward automatic detection and notification of emergencies (62-70% positive assessment) and GoSafeCycle (61.7% positive assessment), as well as reporting apps (59.1% positive assessment). Such findings are important in the context of current promotion of active transports and highlight the need for further development of system supported by the general public.
Resumo:
This study examined associations between objective environmental attributes and, separately, transport (TC) and recreational cycling (RC). Environmental attributes were more strongly associated with TC than RC. Distances to areas with the best bicycle infrastructure and urban amenities may be key environmental factors influencing TC but not RC. Government investments in bicycle infrastructure within inner Brisbane appear to have resulted in more TC than in outer areas and to appeal to residents of both the most and least disadvantaged neighbourhoods. Extending this infrastructure to residents living in disadvantaged and advantaged neighbourhoods outside the CBD could expand TC participation.
Resumo:
Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.