1000 resultados para curva di Jordan vertici teorema di Schönflies
Resumo:
Questa tesi si prefigge lo scopo di dimostrare il teorema di Igusa. Inizia introducendo algebricamente i numeri p-adici e ne dà una rappresentazione grafica. Sviluppa poi un integrale definito dalla misura di Haar, invariante per traslazione e computa alcuni esempi. Utilizza il blow up come strumento per la risoluzione di alcuni integrali ed enuncia un'applicazione del teorema di Hironaka sulla risolubilità delle singolarità. Infine usa questi risultati per dimostrare il teorema di Igusa.
Resumo:
La seguente tesi affronta la dimostrazione del teorema dei quattro colori. Dopo un introduzione dei concetti cardine utili alla dimostrazione, quali i concetti ed i risultati principali della teoria dei grafi e della loro colorazione, viene affrontata a livello prima storico e poi tecnico l'evoluzione della dimostrazione del teorema, che rimase congettura per 124 anni.
Resumo:
Il teorema della mappa di Riemann è un risultato fondamentale dell'analisi complessa che afferma l'esistenza di un biolomorfismo tra un qualsiasi dominio semplicemente connesso incluso strettamente nel piano ed il disco unità. Si tratta di un teorema di grande importanza e generalità, dato che non si fa alcuna ipotesi sul bordo del dominio considerato. Inoltre ha applicazioni in diverse aree della matematica, ad esempio nella topologia: può infatti essere usato per dimostrare che due domini semplicemente connessi del piano sono tra loro omeomorfi. Presentiamo in questa tesi due diverse dimostrazioni del teorema.
Resumo:
La tesi tratta dei teoremi ergodici più importanti scoperti dalla fine dell'800 ad oggi.
Resumo:
teorema di estensione di Carathéodory
Resumo:
Superfici di Riemann compatte, divisori, Teorema di Riemann Roch, immersioni nello spazio proiettivo.
Resumo:
Il punto centrale della tesi è stato dimostrare il Teorema di Koebe per le funzioni armoniche. È stato necessario partire da alcuni risultati di integrazione in Rn per ricavare identità e formule di rappresentazione per funzioni di classe C2, introdurre le funzioni armoniche e farne quindi una analisi accurata. Tali funzioni sono state caratterizzate tramite le formule di media e messe in relazione con le funzioni olomorfe, per le quali vale una formula simile di rappresentazione.
Resumo:
Dopo aver introdotto alcune nozioni della teoria della probabilità, ho esposto il teorema di Chebyshev ed alcuni teoremi ad esso collegati. Ho infine analizzato un'applicazione legata alle strategie d'investimento.
Resumo:
Nella tesi vengono introdotte le varietà differenziabili per poter trattare un problema di immergibilità di varietà differenziabili. Viene data una dimostrazione di un teorema di Whitney nel caso di varietà differenziabili compatte. Il teorema stabilisce che per una varietà compatta di dimensione n esiste un embedding nello spazio euclideo di dimensione 2n+1. Whitney stesso ha migliorato questo risultato, dimostrando che una varietà differenziabile può essere immersa tramite un embedding nello spazio euclideo di dimensione 2n. Nella tesi vengono dati alcuni esempi di questo miglioramento del teorema.
Resumo:
Lo scopo di questa tesi è analizzare il teorema del punto fisso di Brouwer, e lo faremo da più punti di vista, generalizzandolo e dando una piccola illustrazione di una sua possibile applicazione nella teoria dei giochi. Il teorema del punto fisso è uno dei teoremi prìncipi della topologia algebrica. Nella versione classica esso afferma che qualsiasi funzione continua che porta la palla unitaria di \R^{n} in se stessa possiede un punto fisso.
Resumo:
In questa tesi è trattato il tema della soddisfacibilità booleana o proposizionale, detta anche SAT, ovvero il problema di determinare se una formula booleana è soddisfacibile o meno. Soddisfacibile significa che è possibile assegnare le variabili in modo che la formula assuma il valore di verità vero; viceversa si dice insoddisfacibile se tale assegnamento non esiste e se quindi la formula esprime una funzione identicamente falsa. A tal fine si introducono degli strumenti preliminari che permetteranno di affrontare più approfonditamente la questione, partendo dalla definizione basilare di macchina di Turing, affrontando poi le classi di complessità e la riduzione, la nozione di NP-completezza e si dimostra poi che SAT è un problema NP-completo. Infine è fornita una definizione generale di SAT-solver e si discutono due dei principali algoritmi utilizzati a tale scopo.
Resumo:
Un sistema sottoposto ad una lenta evoluzione ciclica è descritto da un'Hamiltoniana H(X_1(t),...,X_n(t)) dipendente da un insieme di parametri {X_i} che descrivono una curva chiusa nello spazio di appartenenza. Sotto le opportune ipotesi, il teorema adiabatico ci garantisce che il sistema ritornerà nel suo stato di partenza, e l'equazione di Schrödinger prevede che esso acquisirà una fase decomponibile in due termini, dei quali uno è stato trascurato per lungo tempo. Questo lavoro di tesi va ad indagare principalmente questa fase, detta fase di Berry o, più in generale, fase geometrica, che mostra della caratteristiche uniche e ricche di conseguenze da esplorare: essa risulta indipendente dai dettagli della dinamica del sistema, ed è caratterizzata unicamente dal percorso descritto nello spazio dei parametri, da cui l'attributo geometrico. A partire da essa, e dalle sue generalizzazioni, è stata resa possibile l'interpretazione di nuovi e vecchi effetti, come l'effetto Aharonov-Bohm, che pare mettere sotto una nuova luce i potenziali dell'elettromagnetismo, e affidare loro un ruolo più centrale e fisico all'interno della teoria. Il tutto trova una rigorosa formalizzazione all'interno della teoria dei fibrati e delle connessioni su di essi, che verrà esposta, seppur in superficie, nella parte iniziale.
Resumo:
In questa tesi si dimostra il teorema di inversione di Lévy, risultato che permette di ricostruire, a partire dalla funzione caratteristica di una variabile aleatoria assolutamente continua, la sua densità. Come conseguenza si dimostra che la funzione caratteristica di una variabile aleatoria ne caratterizza univocamente la distribuzione. Viene inoltre presentata una applicazione della formula di inversione per la valutazione di opzioni in finanza con esempi numerici basati sul modello Merton.
Resumo:
La statistica è un ramo della matematica che studia i metodi per raccogliere, organizzare e analizzare un insieme di dati numerici, la cui variazione è influenzata da cause diverse, con lo scopo sia di descrivere le caratteristiche del fenomeno a cui i dati si riferiscono, sia di dedurre, ove possibile, le leggi generali che lo regolano. La statistica si suddivide in statistica descrittiva o deduttiva e in statistica induttiva o inferenza statistica. Noi ci occuperemo di approfondire la seconda, nella quale si studiano le condizioni per cui le conclusioni dedotte dall'analisi statistica di un campione sono valide in casi più generali. In particolare l'inferenza statistica si pone l'obiettivo di indurre o inferire le proprietà di una popolazione (parametri) sulla base dei dati conosciuti relativi ad un campione. Lo scopo principale di questa tesi è analizzare il Teorema di Cochran e illustrarne le possibili applicazioni nei problemi di stima in un campione Gaussiano. In particolare il Teorema di Cochran riguarda un'importante proprietà delle distribuzioni normali multivariate, che risulta fondamentale nella determinazione di intervalli di fiducia per i parametri incogniti.
Resumo:
Seguendo l'approccio di M. Hairer si dà una dimostrazione della versione probabilistica del Teorema di ipoellitticità di Hormander che utilizza un calcolo di Malliavin "ridotto".