979 resultados para coupling constants
Resumo:
We show that in an SU(2)circle timesU(1) model with a Dine-Fischler-Srednicki-like invisible axion it is possible to obtain (i) the convergence of the three gauge coupling constants at an energy scale near the Peccei-Quinn scale; (ii) the correct value for sin(2)theta<^>(W)(M-Z); (iii) the stabilization of the proton by the cyclic Z(13)circle timesZ(3) symmetries which also stabilize the axion as a solution to the strong CP problem. Concerning the convergence of the three coupling constants and the prediction of the weak mixing angle at the Z peak, this model is as good as the minimal supersymmetric standard model with mu(SUSY)=M-Z. We also consider the standard model with six and seven Higgs doublets. The main calculations were done in the 1-loop approximation but we briefly consider the 2-loop contributions.
Resumo:
The study of charmonium dissociation in heavy ion collisions is generally performed in the framework of effective Lagrangians with meson exchange. Some studies are also developed with the intention of calculate form factors and coupling constants related with charmed and light mesons. These quantifies are important in the evaluation of charmonium cross sections. In this Letter we present a calculation of the omega DD vertex that is a possible interaction vertex in some meson-exchange models spread in the literature. We used the standard method of QCD sum rules in order to obtain the vertex form factor as a function of the transferred momentum. Our results are compatible with the value of this vertex form factor (at zero momentum transfer) obtained in the vector-meson dominance model. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at M(Z), of alpha, alpha(s), and sin(2)theta(W). A discrete, anomalous, Z(13) symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semiclassical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the Z(13) symmetry.
Resumo:
The teleparallel versions of the Einstein and the Landau-Lifshitz energy-momentum complexes of the gravitational field are obtained. By using these complexes, the total energy of the universe, which includes the energy of both the matter and the gravitational fields, is then obtained. It is shown that in the case of a closed universe, the total energy vanishes independently of the pseudotensor used, as well as of the three dimensionless coupling constants of teleparallel gravity.
Resumo:
We employ the NJL model to calculate mesonic correlation functions at finite temperature and compare results with recent lattice QCD simulations. We employ an implicit regularization scheme to deal with the divergent amplitudes to obtain ambiguity-free, scale-invariant and symmetry-preserving physical amplitudes. Making the coupling constants of the model temperature dependent, we show that at low momenta our results agree qualitatively with lattice simulations.
Resumo:
We present new theoretical results on the spectrum of the quantum field theory of the double sine-Gordon model. This non-integrable model displays different varieties of kink excitations and bound states thereof. Their mass can be obtained by using a semiclassical expression of the matrix elements of the local fields. In certain regions of the coupling-constants space the semiclassical method provides a picture which is complementary to the one of the form factor perturbation theory, since the two techniques give information about the mass of different types of excitations. In other regions the two methods are comparable, since they describe the same kind of particles. Furthermore, the semiclassical picture is particularly suited to describe the phenomenon of false vacuum decay, and it also accounts in a natural way the presence of resonance states and the occurrence of a phase transition. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
For certain models, the energy of the universe, which includes the energy of both matter and the gravitational fields, is obtained by using the quasi-local energy-momentum in teleparallel gravity. It is shown that, in the case of the Bianchi type I and II universes, not only the total energy but also the quasi-local energy-momentum for any region vanishes independently of the three dimensionless coupling constants of teleparallel gravity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.
Resumo:
A novel strategy to handle divergences typical of perturbative calculations is implemented for the Nambu-Jona-Lasinio model and its phenomenological consequences investigated. The central idea of the method is to avoid the critical step involved in the regularization process, namely, the explicit evaluation of divergent integrals. This goal is achieved by assuming a regularization distribution in an implicit way and making use, in intermediary steps, only of very general properties of such regularization. The finite parts are separated from the divergent ones and integrated free from effects of the regularization. The divergent parts are organized in terms of standard objects, which are independent of the ( arbitrary) momenta running in internal lines of loop graphs. Through the analysis of symmetry relations, a set of properties for the divergent objects are identified, which we denominate consistency relations, reducing the number of divergent objects to only a few. The calculational strategy eliminates unphysical dependencies of the arbitrary choices for the routing of internal momenta, leading to ambiguity-free, and symmetry-preserving physical amplitudes. We show that the imposition of scale properties for the basic divergent objects leads to a critical condition for the constituent quark mass such that the remaining arbitrariness is removed. The model becomes predictive in the sense that its phenomenological consequences do not depend on possible choices made in intermediary steps. Numerical results are obtained for physical quantities at the one-loop level for the pion and sigma masses and pion-quark and sigma-quark coupling constants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The A (2)Sigma(+) and X(2)Pi electronic states of the SiP species have been investigated theoretically at a very high level of correlation treatment (CASSCF/MRSDCI). Very accurate potential energy curves are presented for both states, as well as the associated spectroscopic constants as derived from the vib-rotational energy levels determined by means of the numerical solution of the radial Schrodinger equation. Electronic transition moment function, oscillator strengths, Einstein coefficients for spontaneous emission, and Franck-Condon factors for the A(2)Sigma(+)-X(2)Pi system have been calculated. Dipole moment functions and radiative lifetimes for both states have also been determined. Spin-orbit coupling constants are also reported. The radiative lifetimes for the A(2)Sigma(+) state, taking into account the spin-orbit diagonal correction to the X(2)Pi state, decrease from a value of 138 ms at v' = 0 to 0.48 ms at v' = 8, and, for the X(2)Pi state, from 2.32 s at v = 1 to 0.59 s at v = 5. Vibrational and rotational transitions are expected to be relatively strong.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The flowers of Cassia spectabilis yielded three new piperidine alkaloids, (-)-3-O-acetylspectaline (1), (-)-7-hydroxyspectaline (2), and iso-6-spectaline (3), together with the known (-)-spectaline (4). The green fruits of this plant were also investigated, resulting in the isolation of 1 and 4. Their structures were elucidated using a combination of multidimensional NMR and MS techniques, and relative stereochemistries were established by NOESY correlations and analysis of coupling constants. The DNA-damaging activity of these compounds was evaluated using a mutant yeast, Saccharomyces cerevisiae, assay.