960 resultados para colon carcinogenesis
Resumo:
Natural killer (NK) cell activity was evaluated after the initiation and promotion steps in a medium-term multi-organ bioassay for carcinogenesis. NK cell activity was assessed in vitro by Cr51 release assay at the 4th and 30th weeks of the experiment. Male Wistar rats were sequentially initiated with N-diethylnitrosamine (DEN i.p.), N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN drinking water), N-methyl-N-nitrosourea (MNU i.p.), dihydroxy-di-N-propylnitrosamine (DHPN drinking water) and N,N'-dimethylhydrazine (DMH s.c.) at subcarcinogenic doses for 4 weeks (DMBDD initiation). One group was evaluated at the 4th week and the other was maintained without any further treatment until the 30th week. Two initiated groups were exposed through the diet to 2-acetylaminofluorene (2-AAF) or phenobarbital (PB), from the 6th until the 30th week. Five additional groups were studied to evaluate the effects of each initiator on NK activity. All groups submitted to initiation only, initiation plus promotion, or promotion only, developed significantly more preneoplastic lesions than the untreated control group. The main target organs for tumor development in the initiated animals were the liver and the colon, irrespective of treatment with 2-AAF or PB. NK cell activity was not affected by exposure to genotoxic carcinogens after initiation, at the 4th week. Treatments only with PB or 2-AAF did not change NK cell activity. However, decreased NK cell activity was registered in the group only initiated with DMBDD and in the group given DMBDD+2-AAF. This late depression of NK cell activity at the 30th week could be related to the production of suppressing molecules by the tumor cells.
Resumo:
Human cells are constantly exposed to DNA damage. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum (XP), ataxia-telangiectasia (AT) and Fanconi anemia (FA). This review focuses on the historical discoveries related with these three diseases and describes their impact on the understanding of DNA repair mechanisms and the causes of human cancer. As deficiencies in DNA repair are also often related with progeria symptoms, unrepaired damage and aging are somehow related. Several other pathologies associated with DNA repair defects, genetic instability and increased cancer risk are also discussed. In fact, studies with cells from these many syndromes have helped in understanding important levels of protection against cancer and aging, although little help has actually been conferred to the patients in terms of therapy. Finally, the recent advances in combined basic and translational research on DNA repair and chemotherapy are presented.
Resumo:
Cyclooxygenase-2/Carbonic anhydrase-IX up-regulation promotes invasive potential and hypoxia survival in colorectal cancer cells Purpose: Cyclooxygenase-2 (COX-2) is a major mediator of inflammation, playing a pivotal role in colorectal carcinogenesis. Hypoxia is an universal hallmark of solid tumour in vivo. This investigation was prompted by the observation that in colorectal cancer cells the expression of COX-2 protein is positively correlated with that of the hypoxia survival gene Carbonic Anhydrase-IX (CA-IX). Experimental Design: Since COX-2 gene expression and activity is increased in hypoxia, and that CA-IX is expressed also in normoxia in colorectal cancer cells, we tested the hypothesis that COX-2 activity in normoxia, as well as in hypoxia may be functionally linked to that of CA-IX gene. We investigated the role of COX-2 and CA-IX in colorectal cancer cell lines. In this regard, we performed RNA interference to knockdown COX-2 gene in vitro and immunohistochemistry to evaluate the protein expression of COX-2 and CA-IX in human colon cancer tissue specimens ex vivo. Results: We found that COX-2, by PGE2 production, controls CA-IX gene expression in an ERK dependent manner. In line with this finding, we also showed that the COX-2 inhibition by a specific short harpin COX-2 RNA (shCOX-2) or by a specific drug (SC-236), down-regulated CA-IX expression in colon cancer cells. We then exposed colon cancer cells to hypoxia stimuli and found that COX-2/CA-IX interplay promoted hypoxia survival. Moreover, we also report that COX-2/CA-IX interplay triggers Matrix Metalloproteinase 2/9 (MMP-2/9) activation and enhances the invasiveness of colorectal cancer cells. Thus given our above observations, we found that CA-IX and COX-2 protein expressions correlate with more aggressive stage colorectal cancer tissues ex vivo. Conclusions: Taken together these data indicate that COX-2/CA-IX interplay promotes an aggressive phenotype (hypoxia survival and invasiveness) which can be modulated in vitro by COX-2 selective inhibition and which may play a role in determining the biological aggressiveness of colorectal tumours. Moreover, in vitro and ex vivo data also suggest that the signatures of inflammation (COX-2) and hypoxia (CA-IX) may be difficult to be disentangled in colon cancer, being both responsible for the up-regulation of the same pathways.
Resumo:
I microRNA sono una classe di piccole molecole di RNA non codificante che controllano la stabilità di numerosi RNA messaggeri, perciò sono considerati come “master regulator” dell’espressione genica. Ogni tumore è caratterizzato da un profilo di espressione alterato dei microRNA. Il miR-101 è un oncosoppressore represso nei tessuti tumorali ed è candidato come biomarcatore del cancro colon-rettale. È regolato da numerosi eventi fisiologici e patologici, come angiogenesi e carcinogenesi. Gli eventi molecolari coinvolti nella regolazione dell’espressione del miR-101 sono scarsamente conosciuti, poiché è trascritto da due loci genici non caratterizzati. L’obiettivo di questo lavoro è di caratterizzare i geni del miR-101 ed individuarne i regolatori molecolari coinvolti nella cancerogenesi colon-rettale.
Resumo:
BACKGROUND Longstanding ulcerative colitis (UC) bears a high risk for development of UC-associated colorectal carcinoma (UCC). The inflammatory microenvironment influences microRNA expression, which in turn deregulates target gene expression. microRNA-26b (miR-26b) was shown to be instrumental in normal tissue growth and differentiation. Thus, we aimed to investigate the impact of miR-26b in inflammation-associated colorectal carcinogenesis. METHODS Two different cohorts of patients were investigated. In the retrospective group, a tissue microarray with 38 samples from 17 UC/UCC patients was used for miR-26b in situ hybridization and quantitative reverse transcription polymerase chain reaction analyses. In the prospective group, we investigated miR-26b expression in 25 fresh-frozen colon biopsies and corresponding serum samples of 6 UC and 15 non-UC patients, respectively. In silico analysis, Ago2-RNA immunoprecipitation, luciferase reporter assay, quantitative reverse transcription polymerase chain reaction examination, and miR-26b mimic overexpression were employed for target validation. RESULTS miR-26b expression was shown to be upregulated with disease progression in tissues and serum of UC and UCC patients. Using miR-26b and Ki-67 expression levels, an UCC was predicted with high accuracy. We identified 4 novel miR-26b targets (DIP1, MDM2, CREBBP, BRCA1). Among them, the downregulation of the E3 ubiquitin ligase DIP1 was closely related to death-associated protein kinase stabilization along the normal mucosa-UC-UCC sequence. In silico functional pathway analysis revealed that the common cellular pathways affected by miR-26b are highly related to cancerogenesis and the development of gastrointestinal diseases. CONCLUSIONS We suggest that miR-26b could serve as a biomarker for inflammation-associated processes in the gastrointestinal system. Because miR-26b expression is downregulated in sporadic colon cancer, it could discriminate between UCC and the sporadic cancer type.
Resumo:
This is the first report describing a case where prolonged, severe malabsorption from brown bowel syndrome progressed to multifocally spread small bowel adenocarcinoma. This case involves a female patient who was initially diagnosed with chronic jejunitis associated with primary diffuse lymphangiectasia at the age of 26 years. The course of the disease was clinically, endoscopically, and histologically followed for 21 years until her death at the age 47 due to multifocal, metastasizing adenocarcinoma of the small bowel. Multiple lipofuscin deposits (so-called brown bowel syndrome) and severe jejunitis were observed microscopically, and sections of the small bowel showed dense lymphoplasmacytic infiltration of the lamina propria as well as blocked lymphatic vessels. After several decades, multifocal nests of adenocarcinoma cells and extensive, flat, neoplastic mucosal proliferations were found only in the small bowel, along with a loss of the mismatch repair protein MLH1 as a long-term consequence of chronic jejunitis with malabsorption. No evidence was found for hereditary nonpolyposis colon carcinoma syndrome. This article demonstrates for the first time multifocal carcinogenesis in the small bowel in a malabsorption syndrome in an enteritis-dysplasia-carcinoma sequence.
Resumo:
The study of colon cancer has taken advantage of the development of a model in animals in which tumors in the colon are easily induced by chemical treatment. When 1,2-dimethylhydrazine (DMH) is injected into rats tumor growth is observed in colon in preference to other tissues. This observation led us to investigate the Cytochrome P450 system in colon and its participation in the particular “colon sensitivity” to DMH. It has been established that the Cytochrome P450 system participates in the metabolism of DMH and the methyl carbonium product of Cytochrome P450 activation of DMH is responsible for DNA damage which is considered an initial step to carcinogenesis. The Cytochrome P450 system is a reasonable place to search for an explanation of this organotropic effect of DMH and we feel that the knowledge obtained from this study can take us closer to understanding the development of colonic malignancy. In our study we used a human colon cell line (LS174T) treated with DMH. The Cytochrome P450 system in the cells was manipulated with inducers of different isoforms of Cytochrome P450. The effect of DMH on colon cells was measured by determination of O-6-methylguanine which is a DNA adduct derived from the metabolism of this chemical and is associated with development of tumors. Our results support the hypothesis that Cytochrome P450 plays an important role in the damage to cellular DNA by DMH. This damage is increased after induction of Cytochromes P450 1A1 and 2E1. The effect of inhibition of the methyltransferase and glutathione systems on protection against DMH damage in colon demonstrated the importance of the protective role of the former and the lack of effective protection of the latter system. ^
Resumo:
CpG island methylation within single gene promoters can silence expression of associated genes. We first extended these studies to bidirectional gene pairs controlled by single promoters. We showed that hypermethylation of bidirectional promoter-associated CpG island silences gene pairs (WNT9A/CD558500, CTDSPL/BC040563, and KCNK15/BF 195580) simultaneously. Hypomethylation of these promoters by 5-aza-2'-deoxycytidine treatment reactivated or enhanced gene expression bidirectionally. These results were further confirmed by luciferase assays. Methylation of WNT9A/CD558500 and CTDSPL/BC040563 promoters occurs frequently in primary colon cancers and acute lymphoid leukemia, respectively. ^ Next we sought to understand the origins of hypermethylation in cancer. CpG islands associated with tumor suppressor genes are normally free from methylation, but can be hypermethylated in cancer. It remains poorly understood how these genes are protected from methylation in normal tissues. In our studies, we aimed to determine if cis-acting elements in these genes are responsible for this protection, using the tumor suppressor gene p16 as a model. We found that Alu repeats located both upstream and downstream of the p16 promoter become hypermethylated with age. In colon cancer samples, the methylation level is particularly high, and the promoter can also be affected. Therefore, the protection in the promoter against methylation spreading could fail during tumorigenesis. This methylation pattern in p16 was also observed in cell lines of different tissue origins, and their methylation levels were found to be inversely correlated with that of active histone modification markers (H3K4-3me and H3K9-Ac). To identify the mechanism of protection against methylation spreading, we constructed serial deletions of the p16 protected region and used silencing of a neomycin reporter gene to evaluate the protective effects of these fragments. A 126 bp element was identified within the region which exerts bidirectional protection against DNA methylation, independently of its transcriptional activity. The protective strength of this element is comparable to that of the HS4 insulator. During long-term culture, the presence of this element significantly slowed methylation spreading. In conclusion, we have found that an element located in the p16 promoter is responsible for protection against DNA methylation spreading in normal tissues. The failure of protective cis-elements may be a general feature of tumor-suppressor gene silencing during tumorigenesis. ^
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that have been implicated in a variety of biologic processes. The PPARδ isotype was recently proposed as a downstream target of the adenomatous polyposis coli (APC)/β-catenin pathway in colorectal carcinogenesis. To evaluate its role in tumorigenesis, a PPARδ null cell line was created by targeted homologous recombination. When inoculated as xenografts in nude mice, PPARδ −/− cells exhibited a decreased ability to form tumors compared with PPARδ +/− and wild-type controls. These data suggest that suppression of PPARδ expression contributes to the growth-inhibitory effects of the APC tumor suppressor.
Resumo:
We have previously linked aging, carcinogenesis, and de novo methylation within the promoter of the estrogen receptor (ER) gene in human colon. We now examine the dynamics of this process for the imprinted gene for insulin-like growth factor II (IGF2). In young individuals, the P2-4 promoters of IGF2 are methylated exclusively on the silenced maternal allele. During aging, this promoter methylation becomes more extensive and involves the originally unmethylated allele. Most adult human tumors, including colon, breast, lung, and leukemias, exhibit increased methylation at the P2-4 IGF2 promoters, suggesting further spreading during the neoplastic process. In tumors, this methylation is associated with diminished or absent IGF2 expression from the methylated P3 promoter but maintained expression from P1, an upstream promoter that is not contained within the IGF2 CpG island. Our results demonstrate a remarkable evolution of methylation patterns in the imprinted promoter of the IGF2 gene during aging and carcinogenesis, and provide further evidence for a potential link between aberrant methylation and diseases of aging.
Resumo:
Aims: An early adenocarcinoma of the ascending colon was confined to a mass of gut-associated lymphoid tissue (GALT). The first description of an adenocarcinoma of colon differentiating as dome epithelium is presented. Methods and results: A plaque-like carcinoma was identified opposite the ileocaecal valve in an asymptomatic 56-year-old man with a family history of colorectal cancer. Malignant epithelium was confined to a mass of GALT filling but limited to the submucosa, Characterization of the neoplasm was undertaken by means of mucin histochemistry, immunohistochemistry, electron microscopy and assessment of DNA microsatellite instability status. The malignant epithelium comprised well differentiated columnar cells with a microvillous brush border and expressing MUC1, but no goblet cells or expression of MUC2. The demonstration of focal clusters of intraepithelial B-lymphocytes supported the presence of functioning M-cells within the malignant neoplasm. The cancer was DNA microsatellite stable despite the finding of tumour infiltrating lymphocytes. Conclusions: There is evidence for the origin of colorectal neoplasia from dome epithelium in both experimental models and microreconstruction studies of early adenomas in nonpolypotic human colorectal mucose, It is suggested that the lymphocyte-rich subset of colorectal cancer that expresses MUC1 but not MUC2 may be differentiating as dome epithelium of gut-associated lymphoid tissue.
Resumo:
Immune responses against thyroid carcinomas have long been demonstrated and associations between inflammatory microenvironment and thyroid carcinomas repeatedly reported. This scenario has prompted scientists throughout the world to unveil how the inflammatory microenvironment is established in thyroid tumors and what is its influence on the outcome of patients with thyroid carcinoma. Many studies have reported the role of evasion from the immune system in tumor progression and reinforced the weakness of the innate immune response toward thyroid cancer spread in advanced stages. Translational studies have provided evidence that an increased density of tumor-associated macrophages in poorly differentiated thyroid carcinoma (DTC) is associated with an aggressive phenotype at diagnosis and decreased cancer-related survival, whereas well-DTC microenvironment enriched with macrophages is correlated with improved disease-free survival. It is possible that these different results are related to different microenvironments. Several studies have provided evidence that patients whose tumors are not infiltrated by lymphocytes present a high recurrence rate, suggesting that the presence of lymphocytes in the tumor microenvironment may favor the prognosis of patients with thyroid carcinoma. However, the effect of lymphocytes and other immune cells on patient outcome seems to result from complex interactions between the tumor and immune system, and the molecular pattern of cytokines and chemokines helps to explain the involvement of the immune system in thyroid tumor progression. The inflammatory microenvironment may help to characterize aggressive tumors and to identify patients who would benefit from a more invasive approach, probably sparing the vast majority of patients with an indolent disease from unnecessary procedures.
Resumo:
Drinking hot mate has been associated with risk for esophageal cancer in South America. Thus. the aims of this study were to evaluate the modifying effects of mate intake on DNA damage and esophageal carcinogenesis induced by diethylnitrosamine (DEN) and thermal injury (TI) in male Wistar rats. At the initiation phase of carcinogenesis, rats were treated with DEN (8 x 80 mg/kg) and submitted to TI (water at 65 degrees C, 1 ml/rat, instilled into the esophagus). Concomitantly, the animals received mate (2.0% w/v) for 8 weeks. Samples of peripheral blood were collected 4 h after the last DEN application for DNA damage analysis. At weeks 8 and 20, samples from esophagus and liver were also collected for histological and immunohistochemical analysis. Mate significantly decreased DNA damage in leukocytes, cell proliferation rates in both esophagus and liver and the number of preneoplastic liver lesions from DEN/TI-treated animals at week 8. A significant lower incidence of esophageal papillomas and liver adenomas and tumor multiplicity was observed in the animals previously treated with mate at week 20. Thus, mate presented protective effects against DNA damage and esophageal and liver carcinogenesis induced by DEN. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study we assessed the protective effect of topical application of Pothomorphe umbellata extract on ultraviolet B (UVB)-induced skin lesion parameters in hairless mouse epidermis. A single dose of UVB irradiation (0.23 kJ/m(2)) resulted in a significant decrease in thymine dimer-positive cells and apoptotic sunburn cells, with an increase in p53 and proliferating cell nuclear antigen-positive cells in the epidermis. After 5 weeks (total dose 13.17 kJ/m(2)) and 15 weeks (total dose 55.51 kJ/m(2)) of irradiation, P. umbellata treatment inhibited the hyperplasic response and induced an increase in p53-positive cells. These findings suggest that P. umbellata extract affords protection against UVB-induced skin lesions.