985 resultados para climate mitigation
Resumo:
This paper shows the numerous problems of conventional economic analysis in the evaluation of climate change mitigation policies. The article points out the many limitations, omissions, and the arbitrariness that have characterized most evaluation models applied up until now. These shortcomings, in an almost overwhelming way, have biased the result towards the recommendation of a lower aggressiveness of emission mitigation policies. Consequently, this paper questions whether these results provide an appropriate answer to the problem. Finally, various points that an analysis coherent with sustainable development should take into account are presented.
Resumo:
What's the role of unilateral measures in global climate change mitigation in a post-Durban, post 2012 global policy regime? We argue that under conditions of preference heterogeneity, unilateral emissions mitigation at a subnational level may exist even when a nation is unwilling to commit to emission cuts. As the fraction of individuals unilaterally cutting emissions in a global strongly connected network of countries evolves over time, learning the costs of cutting emissions can result in the adoption of such activities globally and we establish that this will indeed happen under certain assumptions. We analyze the features of a policy proposal that could accelerate convergence to a low carbon world in the presence of global learning.
Resumo:
The main purpose of the Clmate Change Bill is to provide for the adoption of a national policy for reducing greenhouse gas (GHG) emissions; to support this through the making of mitigation and adaptation action plans; and to make provision for emission reduction targets to support the objective of transition to a low carbon, climate resilient and environmentally sustainable economy.The remit of the Institute of Public Health in Ireland (IPH) is to promote cooperation for public health between Northern Ireland and the Republic of Ireland in the areas of research and information, capacity building and policy advice. Our approach is to support Departments of Health and their agencies in both jurisdictions, and maximise the benefits of all-island cooperation to achieve practical benefits for people in Northern Ireland and the Republic of Ireland.IPH has a keen interest in the effects of climate change on health. In September 2010 the IPH published a paper – Climate Change and Health: A platform for action - to inform policy-makers and the public about the health benefits in reducing greenhouse gas emissions. This paper followed a seminar with international speakers, opened by Minister Gormley, on the same topic in February 2010.
Resumo:
Numerous recent reports by non-governmental organisations (NGOs), academics and international organisations have focused on so-called 'climate refugees'. This article examines the turn from a discourse of 'climate refugees', in which organisations perceive migration as a failure of both mitigation and adaptation to climate change, to one of 'climate migration', in which organisations promote migration as a strategy of adaptation. Its focus is the promotion of climate migration management, and it explores the trend of these discourses through two sections. First, it provides an empirical account of the two discourses, emphasising the differentiation between them. It then focuses on the discourse of climate migration, its origins, extent and content, and the associated practices of 'migration management'. The second part argues that the turn to the promotion of 'climate migration' should be understood as a way to manage the insecurity created by climate change. However, international organisations enacts this management within the forms of neoliberal capitalism, including the framework of governance. Therefore, the promotion of 'climate migration' as a strategy of adaptation to climate change is located within the tendencies of neoliberalism and the reconfiguration of southern states' sovereignty through governance.
Resumo:
A noticeable increase in mean temperature has already been observed in Switzerland and summer temperatures up to 4.8 K warmer are expected by 2090. This article reviews the observed impacts of climate change on biodiversity and consider some perspectives for the future at the national level. The following impacts are already evident for all considered taxonomic groups: elevation shifts of distribution toward mountain summits, spread of thermophilous species, colonisation by new species from warmer areas and phenological shifts. Additionally, in the driest areas, increasing droughts are affecting tree survival and fish species are suffering from warm temperatures in lowland regions. These observations are coherent with model projections, and future changes will probably follow the current trends. These changes will likely cause extinctions for alpine species (competition, loss of habitat) and lowland species (temperature or drought stress). In the very urbanised Swiss landscape, the high fragmentation of the natural ecosystems will hinder the dispersal of many species towards mountains. Moreover, disruptions in species interactions caused by individual migration rates or phenological shifts are likely to have consequences for biodiversity. Conversely, the inertia of the ecosystems (species longevity, restricted dispersal) and the local persistence of populations will probably result in lower extinction rates than expected with some models, at least in 21st century. It is thus very difficult to estimate the impact of climate change in terms of species extinctions. A greater recognition by society of the intrinsic value of biodiversity and of its importance for our existence will be essential to put in place effective mitigation measures and to safeguard a maximum number of native species.
Resumo:
Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change.
Resumo:
Today, perhaps without their realization, Iowans are factoring climate change into their lives and activities. Current farming practices and flood mitigation efforts, for example, are reflecting warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual stream flows, and more frequent severe precipitation events (Fig. 1) than were prevalent during the past 50 years. Some of the effects of these changes (such as longer growing season) may be positive, while others (particularly the tendency for greater precipitation events that lead to flooding) are negative. Climate change embodies all of these results and many more in a complex manner. The Iowa legislature has been proactive in seeking advice about climate change and its impacts on our state. In 2007, Governor Culver and the Iowa General Assembly enacted Senate File 485 and House File 2571 to create the Iowa Climate Change Advisory Council (ICCAC). ICCAC members reported an emissions inventory and a forecast for Iowa’s greenhouse gases (GHGs), policy options for reducing Iowa’s GHG, and two scenarios charting GHG reductions of 50% and 90% by 2050 from a baseline of 2005. Following issuance of the final report in December 2008, the General Assembly enacted a new bill in 2009 (Sec. 27, Section 473.7, Code 2009 amended) that set in motion a review of climate change impacts and policies in Iowa. This report is the result of that 2009 bill. It continues the dialogue between Iowa’s stakeholders, scientific community, and the state legislature that was begun with these earlier reports.
Resumo:
Blowing and drifting of snow is a major concern for transportation efficiency and road safety in regions where their development is common. One common way to mitigate snow drift on roadways is to install plastic snow fences. Correct design of snow fences is critical for road safety and maintaining the roads open during winter in the US Midwest and other states affected by large snow events during the winter season and to maintain costs related to accumulation of snow on the roads and repair of roads to minimum levels. Of critical importance for road safety is the protection against snow drifting in regions with narrow rights of way, where standard fences cannot be deployed at the recommended distance from the road. Designing snow fences requires sound engineering judgment and a thorough evaluation of the potential for snow blowing and drifting at the construction site. The evaluation includes site-specific design parameters typically obtained with semi-empirical relations characterizing the local transport conditions. Among the critical parameters involved in fence design and assessment of their post-construction efficiency is the quantification of the snow accumulation at fence sites. The present study proposes a joint experimental and numerical approach to monitor snow deposits around snow fences, quantitatively estimate snow deposits in the field, asses the efficiency and improve the design of snow fences. Snow deposit profiles were mapped using GPS based real-time kinematic surveys (RTK) conducted at the monitored field site during and after snow storms. The monitored site allowed testing different snow fence designs under close to identical conditions over four winter seasons. The study also discusses the detailed monitoring system and analysis of weather forecast and meteorological conditions at the monitored sites. A main goal of the present study was to assess the performance of lightweight plastic snow fences with a lower porosity than the typical 50% porosity used in standard designs of such fences. The field data collected during the first winter was used to identify the best design for snow fences with a porosity of 50%. Flow fields obtained from numerical simulations showed that the fence design that worked the best during the first winter induced the formation of an elongated area of small velocity magnitude close to the ground. This information was used to identify other candidates for optimum design of fences with a lower porosity. Two of the designs with a fence porosity of 30% that were found to perform well based on results of numerical simulations were tested in the field during the second winter along with the best performing design for fences with a porosity of 50%. Field data showed that the length of the snow deposit away from the fence was reduced by about 30% for the two proposed lower-porosity (30%) fence designs compared to the best design identified for fences with a porosity of 50%. Moreover, one of the lower-porosity designs tested in the field showed no significant snow deposition within the bottom gap region beneath the fence. Thus, a major outcome of this study is to recommend using plastic snow fences with a porosity of 30%. It is expected that this lower-porosity design will continue to work well for even more severe snow events or for successive snow events occurring during the same winter. The approach advocated in the present study allowed making general recommendations for optimizing the design of lower-porosity plastic snow fences. This approach can be extended to improve the design of other types of snow fences. Some preliminary work for living snow fences is also discussed. Another major contribution of this study is to propose, develop protocols and test a novel technique based on close range photogrammetry (CRP) to quantify the snow deposits trapped snow fences. As image data can be acquired continuously, the time evolution of the volume of snow retained by a snow fence during a storm or during a whole winter season can, in principle, be obtained. Moreover, CRP is a non-intrusive method that eliminates the need to perform man-made measurements during the storms, which are difficult and sometimes dangerous to perform. Presently, there is lots of empiricism in the design of snow fences due to lack of data on fence storage capacity on how snow deposits change with the fence design and snow storm characteristics and in the estimation of the main parameters used by the state DOTs to design snow fences at a given site. The availability of such information from CRP measurements should provide critical data for the evaluation of the performance of a certain snow fence design that is tested by the IDOT. As part of the present study, the novel CRP method is tested at several sites. The present study also discusses some attempts and preliminary work to determine the snow relocation coefficient which is one of the main variables that has to be estimated by IDOT engineers when using the standard snow fence design software (Snow Drift Profiler, Tabler, 2006). Our analysis showed that standard empirical formulas did not produce reasonable values when applied at the Iowa test sites monitored as part of the present study and that simple methods to estimate this variable are not reliable. The present study makes recommendations for the development of a new methodology based on Large Scale Particle Image Velocimetry that can directly measure the snow drift fluxes and the amount of snow relocated by the fence.
Resumo:
This special issue of Natural Hazards and Earth System Sciences (NHESS) contains eight papers presented as oral or poster contributions in the Natural Hazards NH-1.2 session on"Extreme events induced by weather and climate change: evaluation, forecasting and proactive planning", held at the European Geosciences Union (EGU) General Assembly in Vienna, Austria, on 13-18 April 2008. The aim of the session was to provide an international forum for presenting new results and for discussing innovative ideas and concepts on extreme hydro-meteorological events, including: (i) the assessment of the risk posed by the extreme events, (ii) the expected changes in the frequency and intensity of the events driven by a changing climate and by multiple human- induced causes, (iii) new modelling approaches and original forecasting methods to predict extreme events and their consequences, and (iv) strategies for hazard mitigation and risk reduction, and for a improved adaptation to extreme hydro-meteorological events ...
Resumo:
Freshwater ecosystems and their biodiversity are presently seriously threatened by global development and population growth, leading to increases in nutrient inputs and intensification of eutrophication-induced problems in receiving fresh waters, particularly in lakes. Climate change constitutes another threat exacerbating the symptoms of eutrophication and species migration and loss. Unequivocal evidence of climate change impacts is still highly fragmented despite the intensive research, in part due to the variety and uncertainty of climate models and underlying emission scenarios but also due to the different approaches applied to study its effects. We first describe the strengths and weaknesses of the multi-faceted approaches that are presently available for elucidating the effects of climate change in lakes, including space-for-time substitution, time series, experiments, palaeoecology and modelling. Reviewing combined results from studies based on the various approaches, we describe the likely effects of climate changes on biological communities, trophic dynamics and the ecological state of lakes. We further discuss potential mitigation and adaptation measures to counteract the effects of climate change on lakes and, finally, we highlight some of the future challenges that we face to improve our capacity for successful prediction.
Resumo:
Climate innovations, that cover both technological applications and process and service innovations, play a key role in climate change mitigation. The purpose of this study was to examine how the Finnish innovation system could be enhanced with governmental measures so that the diffusion of climate innovations could be speeded up. During the study, it became evident that the governmental measures need to support the whole innovation chain, which comprises of research, development, demonstration and deployment. Only this can lead to the successful birth and diffusion of low carbon innovations. The study found that the strengths of the Finnish innovation system are research and development, and the current national innovation policies strongly support these activities. However, these have been emphasised at the expense of the demonstration and deployment. Consequently, the biggest bottlenecks in the Finnish innovation landscape are the lack of pilot and demonstration projects and slow commercialisation, thus the high price of the innovation. To meet with the challenge, the government should firstly promote strict greenhouse gas emission reduction targets. This would boost up the innovation activities, which would also lower the prices of the innovations. To speed up the commercialisation process, measures that stimulate the domestic market, such as feed-in-tariffs and public procurements, are needed. Special attention should also be paid to the measures that could shift the traditional closed innovation chain towards open innovation. This means that the product development should involve experts from several fields such as the user and marketing experts to speed up the commercialisation. In addition, efficient innovation co-operation between both private and public sector is essential. Finally, as the domestic resources are not adequate for producing all the innovations needed, the domestic innovation activities should be focused on a few sectors, and at the same time promote efficient import policies.
Resumo:
Global warming is assertively the greatest environmental challenge for humans of 21st century. It is primarily caused by the anthropogenic greenhouse gas (GHG) that trap heat in the atmosphere. Because of which, the GHG emission mitigation, globally, is a critical issue in the political agenda of all high-profile nations. India, like other developing countries, is facing this threat of climate change while dealing with the challenge of sustaining its rapid economic growth. India’s economy is closely connected to its natural resource base and climate sensitive sectors like water, agriculture and forestry. Due to Climate change the quality and distribution of India’s natural resources may transform and lead to adverse effects on livelihood of its people. Therefore, India is expected to face a major threat due to the projected climate change. This study proposes possible solutions for GHG emission mitigation that are specific to the power sector of India. The methods discussed here will take Indian power sector from present coal dominant ideology to a system, centered with renewable energy sources. The study further proposes a future scenario for 2050, based on the present Indian government policies and global energy technologies advancements.
Resumo:
Global climate change and intentional climate modification, i.e. geoengineering include various ethical problems which are entangled as a complex ensemble of questions regarding the future of the biosphere. The possibilities of catastrophic effects of climate change which are also called “climate emergency” have led to the emergence of the idea of modifying the atmospheric conditions in the form of geoengineering. The novel issue of weather ethics is a subdivision of climate ethics, and it is interested in ethical and political questions surrounding weather and climate control and modification in a restricted spatio-temporal scale. The objective of geoengineering is to counterbalance the adverse effects of climate change and its diverse corollaries in various ways on a large scale. The claim of this dissertation is that there are ethical justifications to claim that currently large-scale interventions to the climate system are ethically questionable. The justification to pursue geoengineering on the basis of considering its pros and cons, is inadequate. Moral judgement can still be elaborated in cases where decisions have to be made urgently and the selection of desirable choices is severely limited. The changes needed to avoid severe negative impacts of climate change requires commitment to mitigation as well as social changes because technical solutions cannot address the issue of climate change altogether. The quantitative emphasis of consumerism should shift to qualitative focus on the aspiration for simplicity in order to a move towards the objective of the continuation of the existence of humankind and a flourishing, vital biosphere.
Resumo:
Climate change is one of the biggest challenges faced by this generation. Despite being the single most important environmental challenge facing the planet and despite over two decades of international climate negotiations, global greenhouse gas (GHG) emissions continue to rise. By the middle of this century, GHGs must be reduced by as much as 40-70% if dangerous climate change is to be avoided. In the Kyoto Protocol no quantitative emission limitation and reduction commitments were placed on the developing countries. For the planning of the future commitments period and possible participation of developing countries, information of the functioning of the energy systems, CO2 emissions development in different sectors, energy use and technological development in developing countries is essential. In addition to the per capita emissions, the efficiency of the energy system in relation to GHG emissions is crucial for the decision of future long-term burden sharing between countries. Country’s future development of CO2 emissions can be defined by the estimated CO2 intensity of the future and the estimated GDP growth. The changes in CO2 intensity depend on several factors, but generally developed countries’ intensity has been increasing in the industrialization phase and decreasing when their economy shifts more towards the system dominated by the service sector. The level of the CO2 intensity depends by a large extent on the production structure and the energy sources that are used. Currently one of the most urgent issues regarding global climate change is to decide the future of the Kyoto Protocol. Negotiations on this topic have already been initiated, with the aim of being finalised by the 2015. This thesis provides insights into the various approaches that can be used to characterise the concept of comparable efforts for developing countries in a future international climate agreement. The thesis examines the post-Kyoto burden sharing questions for developing countries using the contraction and convergence model, which is one approach that has been proposed to allocate commitments regarding future GHG emissions mitigation. This new approach is a practical tool for the evaluation of the Kyoto climate policy process and global climate change negotiations from the perspective of the developing countries.
Resumo:
Les facteurs climatiques ainsi bien que les facteurs non-climatiques doivent être pris en considération dans le processus d'adaptation de l'agriculture aux changements et à la variabilité climatiques (CVC). Ce changement de paradigme met l'agent humain au centre du processus d'adaptation, ce qui peut conduire à une maladaptation. Suite aux débats sur les changements climatiques qui ont attiré l'attention scientifique et publique dans les années 1980 et 1990, l'agriculture canadienne est devenue un des points focaux de plusieurs études pionnières sur les CVC, un phénomène principalement dû à l’effet anthropique. Pour faire face aux CVC, ce n’est pas seulement la mitigation qui est importante mais aussi l’adaptation. Quand il s'agit de l'adaptation, c'est plutôt la variabilité climatique qui nous intéresse que simplement les augmentations moyennes des températures. L'objectif général de ce mémoire de maîtrise est d'améliorer la compréhension des processus d'adaptation et de construction de la capacité d'adaptation ai niveau de la ferme et de la communauté agricole à travers un processus ascendant, c’est-à-dire en utilisant l'approche de co-construction (qui peut également être considéré comme une stratégie d'adaptation en soi), pour développer une gestion et des outils de planification appropriés aux parties prenantes pour accroître ainsi la capacité d'adaptation de la communauté agricole. Pour y arriver, l'approche grounded theory est utilisée. Les résultats consistent de cinq catégories interdépendantes de codes élargis, conceptuellement distinctes et avec un plus grand niveau d'abstraction. La MRC du Haut-Richelieu a été choisie comme étude de cas en raison de plusieurs de ses dimensions agricoles, à part de ses conditions biophysiques favorables. 15 entrevues ont été menées avec les agriculteurs. Les résultats montrent que si certains agriculteurs ont reconnu les côtés positifs et négatifs des CVC, d’autres sont très optimistes à ce sujet comme se ils ne voient que le côté positif; d'où la nécessité de voir les deux côtés des CVC. Aussi, il y a encore une certaine incertitude liée aux CVC, qui vient de la désinformation et la désensibilisation des agriculteurs principalement en ce qui concerne les causes des CVC ainsi que la nature des événements climatiques. En outre, et compte tenu du fait que l'adaptation a plusieurs caractéristiques et types, il existe de nombreux types d'adaptation qui impliquent à la fois l'acteur privé et le gouvernement. De plus, les stratégies d'adaptation doivent être élaborées conjointement par les agriculteurs en concert avec d'autres acteurs, à commencer par les agronomes, car ils servent en tant que relais important entre les agriculteurs et d'autres parties prenantes telles que les institutions publiques et les entreprises privées.