1000 resultados para classificação de imagens
Resumo:
Ao longo dos últimos anos tem-se assistido a uma rápida evolução dos dispositivos móveis. Essa evolução tem sido mais intensa no poder de processamento, na resolução e qualidade das câmaras e na largura de banda das redes móveis de nova geração. Outro aspecto importante é o preço, pois cada vez mais existem dispositivos móveis avançados a um preço acessível, o que facilita a adopção destes equipamentos por parte dos utilizadores. Estes factores contribuem para que o número de utilizadores com “computadores de bolso” tenda a aumentar, possibilitando cada vez mais a criação de ferramentas com maior complexidade que tirem partido das características desses equipamentos. Existem muitas aplicações que exploram estas características para facilitar o trabalho aos utilizadores. Algumas dessas aplicações conseguem retirar informação do mundo físico e fazer algum tipo de processamento, como por exemplo, um leitor de códigos QR ou um OCR (Optical Character Recognizer). Aproveitando o potencial dos dispositivos móveis actuais, este trabalho descreve o estudo, a implementação e a avaliação de uma aplicação de realidade aumentada para adquirir e gerir recibos em papel de forma automática e inteligente. A aplicação utiliza a câmara do dispositivo para adquirir imagens dos recibos de forma a poder processá-las recorrendo a técnicas de processamento de imagem. Tendo uma imagem processada do recibo é efectuado um reconhecimento óptico de caracteres para extracção de informação e é utilizada uma técnica de classificação para atribuir uma classe ao documento. Para um melhor desempenho do classificador é utilizada uma estratégia de aprendizagem incremental. Após a correcta classificação é possível visualizar o recibo com informação adicional (realidade aumentada). O trabalho proposto inclui também a avaliação da interface e dos algoritmos desenvolvidos.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Área de especialização: Imagem Digital por Radiação X.
Resumo:
Depois de mais quinhentos anos de literatura impressa (e de tradições orais e manuscritas anteriores), nas últimas décadas, as tecnologias da informação e comunicação estimularam uma diáspora textual do suporte impresso para o suporte digital e, pela primeira vez, a literatura passou a estar presente nas várias plataformas digitais (computador, e-readers, telemóvel, tablet, etc). Os meios audiovisuais e multimédia tornaram-se veículos de uma literatura digitalizada (obras impressas e digitalizadas eletronicamente), e parceiros ágeis de uma literatura eletrónica, a qual inclui, de uma forma completamente inovadora, produções originalmente criadas com o computador para serem lidas, quase, exclusivamente em ambiente digital. Esta comunicação pretende discutir as singularidades desta nova forma de literatura partindo do princípio de que a hibridez das formas e da inovação tecnológica que os artistas trazem para os trabalhos obrigam, de facto, a um nível elevado de experimentação que pode, no início, ofuscar o conteúdo literário e resistir às tentativas de categorização e classificação clássicas baseadas no impresso. Se a literatura também é tornar estranho o que é conhecido e fazer-nos olhar para as coisas de maneira diferente; se sempre existiram formas diferentes de escrever e de ler, será necessário perceber as características deste novo tipo de escrita eletrónica. A partir de alguns exemplos de trabalhos de literatura eletrónica, pretende-se colocar questões essenciais às práticas anteriores de criação e perceção através de propostas híbridas que compreendem modalidades visuais, sonoras, fílmicas, cinestésicas feitas, por exemplo, de letras que fogem do lugar, sons que ensurdecem, e imagens que cegam.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
No panorama socioeconómico atual, a contenção de despesas e o corte no financiamento de serviços secundários consumidores de recursos conduzem à reformulação de processos e métodos das instituições públicas, que procuram manter a qualidade de vida dos seus cidadãos através de programas que se mostrem mais eficientes e económicos. O crescimento sustentado das tecnologias móveis, em conjunção com o aparecimento de novos paradigmas de interação pessoa-máquina com recurso a sensores e sistemas conscientes do contexto, criaram oportunidades de negócio na área do desenvolvimento de aplicações com vertente cívica para indivíduos e empresas, sensibilizando-os para a disponibilização de serviços orientados ao cidadão. Estas oportunidades de negócio incitaram a equipa do projeto a desenvolver uma plataforma de notificação de problemas urbanos baseada no seu sistema de informação geográfico para entidades municipais. O objetivo principal desta investigação foca a idealização, conceção e implementação de uma solução completa de notificação de problemas urbanos de caráter não urgente, distinta da concorrência pela facilidade com que os cidadãos são capazes de reportar situações que condicionam o seu dia-a-dia. Para alcançar esta distinção da restante oferta, foram realizados diversos estudos para determinar características inovadoras a implementar, assim como todas as funcionalidades base expectáveis neste tipo de sistemas. Esses estudos determinaram a implementação de técnicas de demarcação manual das zonas problemáticas e reconhecimento automático do tipo de problema reportado nas imagens, ambas desenvolvidas no âmbito deste projeto. Para a correta implementação dos módulos de demarcação e reconhecimento de imagem, foram feitos levantamentos do estado da arte destas áreas, fundamentando a escolha de métodos e tecnologias a integrar no projeto. Neste contexto, serão apresentadas em detalhe as várias fases que constituíram o processo de desenvolvimento da plataforma, desde a fase de estudo e comparação de ferramentas, metodologias, e técnicas para cada um dos conceitos abordados, passando pela proposta de um modelo de resolução, até à descrição pormenorizada dos algoritmos implementados. Por último, é realizada uma avaliação de desempenho ao par algoritmo/classificador desenvolvido, através da definição de métricas que estimam o sucesso ou insucesso do classificador de objetos. A avaliação é feita com base num conjunto de imagens de teste, recolhidas manualmente em plataformas públicas de notificação de problemas, confrontando os resultados obtidos pelo algoritmo com os resultados esperados.
Resumo:
Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Detecção Remota e Sistemas de Informação Geográfica
Resumo:
Dissertação de Mestrado em Gestão do Território, Área de Especialização em Detecção Remota e Sistemas de Informação Geográfica
Resumo:
O carcinoma foi a principal causa de morte para cerca de 8,2 milhões de habitantes no ano de 2012 a nível mundial. Deste valor, estima-se que o carcinoma colo retal foi responsável por 694.000 mortes nesse mesmo ano. O tratamento eficaz deste carcinoma carece de uma deteção precoce de determinadas patologias associadas, nomeadamente, à presença de hemorragia ou pólipo na mucosa intestinal. Essa deteção precoce passa pela realização frequente de determinados exames clínicos invasivos, como a endoscopia e a colonoscopia, que poderão ser demasiado invasivos para o Homem para serem realizados regularmente. Assim surgiu a capsula endoscópica (CE) como método de diagnóstico pouco invasivo, confortável, seguro e com a funcionalidade de permitir a visualização de todo o trato gastrointestinal (TGI), uma vez que, com os métodos tradicionais de diagnóstico (endoscopia e colonoscopia) isso não acontece. Técnicas computacionais de processamento e análise de imagem automáticas, tais como filtros de suavização, remoção de ruído, deteção de contorno ou segmentação de zonas de interesse, podem ser utilizadas para facilitar a deteção destas patologias e homogeneizar a resposta entre diferentes clínicos, uma vez que, por cada exame de endoscopia por capsula são recolhidas cerca de 57 600 imagens. As imagens recolhidas a partir da CE passam por uma série de passos de processamento de imagem a m de clarificar a existência ou ausência de patologias no interior do TGI. Essa classificação pretende simplificar e auxiliar o clínico no diagnóstico precoce relativamente às patologias em causa, assim como reduzir o seu cansaço, aumentar a sua performance e aumentar a sua eficiência na análise de dados. Neste contexto e em parceria com a empresa INOVA+, esta tese está integrada no projeto PhotonicPill cofinanciado pelo QREN (Quadro de Referência Estratégico Nacional). Este projeto visa desenvolver um conjunto de módulos baseados em fotónica para incorporar numa CE, a m de possibilitar um diagnóstico mais preciso e atempado de diversas patologias, nomeadamente a presença de pólipos e hemorragias, assim como a possibilidade de terapêutica em locais do trato gastrointestinal de difícil acesso, como é o caso do intestino delgado. Um dos módulos baseados em fotónica assenta na tecnologia narrow band imaging (NBI). A contribuição desta tese no projeto prendeu-se no desenvolvimento de 3 métodos de deteção automática. O primeiro direcionado para a deteção de hemorragia, baseou-se na identificação dos valores mínimos e máximos dos canais de R,G,B para criar um valor de threshold duplo. De seguida, complementa-se o método através de operações morfológicas e operações locais. O segundo método de deteção automática é direcionado para a deteção de pólipo e baseou-se na aplicação da transformada de watershed juntamente com o cálculo de medidas associadas à forma típica de um pólipo. Por último, desenvolveu-se um método de deteção de vascularização na mucosa intestinal recorrendo essencialmente à deteção de valores máximos para cada canal do modelo RGB, definindo um valor de threshold máximo para cada um dos três canais. Uma vez testados os algoritmos e obtendo uma percentagem de especificidade e sensibilidade média superior a 70% em todos os métodos, desenvolveu-se um protótipo de uma interface gráfica para este sistema de apoio à decisão clínica que engloba os três parâmetros em análise: deteção de hemorragia, deteção de pólipo e deteção de vascularização. Esta interface fará toda a gestão do processo, ou seja, fara de forma automática a deteção e classificação das patologias a detetar, lançando uma mensagem de alerta ao clínico a informar se o paciente é ou não portador de alguma das anomalias em análise.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
O desenvolvimento das tecnologias associadas à Detecção Remota e aos Sistemas de Informação Geográfica encontram-se cada vez mais na ordem do dia. E, graças a este desenvolvimento de métodos para acelerar a produção de informação geográfica, assiste-se a um crescente aumento da resolução geométrica, espectral e radiométrica das imagens, e simultaneamente, ao aparecimento de novas aplicações com o intuito de facilitar o processamento e a análise de imagens através da melhoria de algoritmos para extracção de informação. Resultado disso são as imagens de alta resolução, provenientes do satélite WorldView 2 e o mais recente software Envi 5.0, utilizados neste estudo. O presente trabalho tem como principal objectivo desenvolver um projecto de cartografia de uso do solo para a cidade de Maputo, com recurso ao tratamento e à exploração de uma imagem de alta resolução, comparando as potencialidades e limitações dos resultados extraídos através da classificação “pixel a pixel”, através do algoritmo Máxima Verossimilhança, face às potencialidades e eventuais limitações da classificação orientada por objecto, através dos algoritmos K Nearest Neighbor (KNN) e Support Vector Machine (SVM), na extracção do mesmo número e tipo de classes de ocupação/uso do solo. Na classificação “pixel a pixel”, com a aplicação do algoritmo classificação Máxima Verosimilhança, foram ensaiados dois tipos de amostra: uma primeira constituída por 20 classes de ocupação/uso do solo, e uma segunda por 18 classes. Após a fase de experimentação, os resultados obtidos com a primeira amostra ficaram aquém das espectativas, pois observavam-se muitos erros de classificação. A segunda amostra formulada com base nestes erros de classificação e com o objectivo de os minimizar, permitiu obter um resultado próximo das espectativas idealizadas inicialmente, onde as classes de interesse coincidem com a realidade geográfica da cidade de Maputo. Na classificação orientada por objecto foram 4 as etapas metodológicas utilizadas: a atribuição do valor 5 para a segmentação e 90 para a fusão de segmentos; a selecção de 15 exemplos sobre os segmentos gerados para cada classe de interesse; bandas diferentemente distribuídas para o cálculo dos atributos espectrais e de textura; os atributos de forma Elongation e Form Factor e a aplicação dos algoritmos KNN e SVM. Confrontando as imagens resultantes das duas abordagens aplicadas, verificou-se que a qualidade do mapa produzido pela classificação “pixel a pixel” apresenta um nível de detalhe superior aos mapas resultantes da classificação orientada por objecto. Esta diferença de nível de detalhe é justificada pela unidade mínima do processamento de cada classificador: enquanto que na primeira abordagem a unidade mínima é o pixel, traduzinho uma maior detalhe, a segunda abordagem utiliza um conjunto de pixels, objecto, como unidade mínima despoletando situações de generalização. De um modo geral, a extracção da forma dos elementos e a distribuição das classes de interesse correspondem à realidade geográfica em si e, os resultados são bons face ao que é frequente em processamento semiautomático.
Classificação da ocupação do solo através da segmentação de uma imagem de satélite de alta resolução
Resumo:
Este caso de estudo tem como objetivo demonstrar a utilidade da utilização de imagens de satélite de alta resolução para a produção de cartografia temática em áreas urbanas, bem como, experimentar a extracção de elementos de uma imagem de alta resolução a partir de protocolos de segmentação, aplicando uma abordagem orientada por regiões, e recorrendo a dados de uma cena do satélite WorldView2 com as suas novas 4 bandas adicionais. Definiu-se uma nomenclatura de ocupação de solo com base na fotointerpretação da imagem, criou-se uma legenda hierarquizada por 3 níveis de desagregação. No primeiro nível incluiu-se sete classes, no segundo nível as classes foram classificadas pelo nome dos objetos identificados na fotointerpretação, e o terceiro nível foram classificados pelas características dos objetos definidos no nível anterior. Foram criados segmentos de treino através do algoritmo da segmentação, que tem como função criar segmentos vetoriais com base na similaridade espectral e no valor espectral dos conjuntos dos pixéis vizinhos, testou-se varios parâmetros de segmentação de modo a obter o nível de segmentação que visivelmente na imagem se aproximasse mais aos objetos reconhecidos, para assim se gerar as assinaturas espectrais dos objetos representados pela segmentação, procedendo-se à classificação de ocupação de solo baseada nos segmentos.
Resumo:
O mapeamento do uso da terra é fundamental para o entendimento dos processos de mudanças globais, especialmente em regiões como a Amazônia que estão sofrendo grande pressão de desenvolvimento. Tradicionalmente estes mapeamentos têm sido feitos utilizando técnicas de interpretação visual de imagens de satélites, que, embora de resultados satisfatórios, demandam muito tempo e alto custo. Neste trabalho é proposta uma técnica de segmentação da imagens com base em um algoritmo de crescimento de regiões, seguida de uma classificação não-supervisionada por regiões. Desta forma, a classificação temática se refere a um conjunto de elementos (pixels da imagem), beneficiando-se portanto da informação contextual e minimizando as limitações das técnicas de processamento digital baseadas em análise pontual (pixel-a-pixel). Esta técnica foi avaliada numa área típica da Amazônia, situada ao norte de Manaus, AM, utilizando imagens do sensor "Thematic Mapper" - TM do satélite Landsat, tanto na sua forma original quanto decomposta em elementos puros como vegetação verde, vegetação seca (madeira), sombra e solo, aqui denominada imagem misturas. Os resultados foram validados por um mapa de referência gerado a partir de técnicas consagradas de interpretação visual, com verificação de campo, e indicaram que a classificação automática é viável para o mapeamento de uso da terra na Amazônia. Testes estatísticos indicaram que houve concordância significativa entre as classificações automáticas digitais e o mapa de referência (em tomo de 95% de confiança).
Resumo:
A área da planície de inundação da Amazônia é estimada em 300 000km² e sua produtividade primária em 1,17 x 10(14) g C yr-1. Deste total de área e produtividade, estimativas sugerem que 43% e 62%, respectivamente, são atribuídos às plantas aquáticas. Estas estimativas variam de acordo com o pulso de inundação. Por exemplo, durante o período de seca as plantas terrestres (herbáceas) geralmente ocupam áreas que apresentam plantas aquáticas na cheia. A área e a produtividade destes ecossistemas são informações essenciais para a compreensão da dinâmica biogeoquímica da Amazônia. Imagens de satélites (radar) combinadas com amostragem de campo foram utilizadas para estimar a biomassa e mapear a área de cobertura de plantas aquáticas emergentes para calcular a produção primária de plantas aquáticas na várzea do baixo Amazonas. A combinação de bandas C e L forneceu a melhor correlação (r=0,82) e um ponto de saturação de biomassa intermediário (620 gm-2) para estimar biomassa aérea. O método de segmentação e classificação por região foi utilizado para classificar combinações de bandas C e L para cada período de nível de água, e forneceu uma precisão de mapeamento maior que 95% para determinação espacial de áreas cobertas por plantas aquáticas. Combinando a distribuição espacial de plantas aquáticas, o modelo para estimativa de biomassa aérea e a porcentagem de biomassa submersa, estimou-se espacialmente uma produção primária líquida anual de 1.9x10(12) g C yr-1 (±28%) para as plantas aquáticas em uma área de 394km².