Processamento e Análise de Imagens Adquiridas através de Cápsula Endoscópica para o Auxílio ao Diagnóstico Clínico
Contribuinte(s) |
Faria, Luiz Felipe Rocha de Santos, Carla |
---|---|
Data(s) |
12/04/2016
12/04/2016
2015
2015
|
Resumo |
O carcinoma foi a principal causa de morte para cerca de 8,2 milhões de habitantes no ano de 2012 a nível mundial. Deste valor, estima-se que o carcinoma colo retal foi responsável por 694.000 mortes nesse mesmo ano. O tratamento eficaz deste carcinoma carece de uma deteção precoce de determinadas patologias associadas, nomeadamente, à presença de hemorragia ou pólipo na mucosa intestinal. Essa deteção precoce passa pela realização frequente de determinados exames clínicos invasivos, como a endoscopia e a colonoscopia, que poderão ser demasiado invasivos para o Homem para serem realizados regularmente. Assim surgiu a capsula endoscópica (CE) como método de diagnóstico pouco invasivo, confortável, seguro e com a funcionalidade de permitir a visualização de todo o trato gastrointestinal (TGI), uma vez que, com os métodos tradicionais de diagnóstico (endoscopia e colonoscopia) isso não acontece. Técnicas computacionais de processamento e análise de imagem automáticas, tais como filtros de suavização, remoção de ruído, deteção de contorno ou segmentação de zonas de interesse, podem ser utilizadas para facilitar a deteção destas patologias e homogeneizar a resposta entre diferentes clínicos, uma vez que, por cada exame de endoscopia por capsula são recolhidas cerca de 57 600 imagens. As imagens recolhidas a partir da CE passam por uma série de passos de processamento de imagem a m de clarificar a existência ou ausência de patologias no interior do TGI. Essa classificação pretende simplificar e auxiliar o clínico no diagnóstico precoce relativamente às patologias em causa, assim como reduzir o seu cansaço, aumentar a sua performance e aumentar a sua eficiência na análise de dados. Neste contexto e em parceria com a empresa INOVA+, esta tese está integrada no projeto PhotonicPill cofinanciado pelo QREN (Quadro de Referência Estratégico Nacional). Este projeto visa desenvolver um conjunto de módulos baseados em fotónica para incorporar numa CE, a m de possibilitar um diagnóstico mais preciso e atempado de diversas patologias, nomeadamente a presença de pólipos e hemorragias, assim como a possibilidade de terapêutica em locais do trato gastrointestinal de difícil acesso, como é o caso do intestino delgado. Um dos módulos baseados em fotónica assenta na tecnologia narrow band imaging (NBI). A contribuição desta tese no projeto prendeu-se no desenvolvimento de 3 métodos de deteção automática. O primeiro direcionado para a deteção de hemorragia, baseou-se na identificação dos valores mínimos e máximos dos canais de R,G,B para criar um valor de threshold duplo. De seguida, complementa-se o método através de operações morfológicas e operações locais. O segundo método de deteção automática é direcionado para a deteção de pólipo e baseou-se na aplicação da transformada de watershed juntamente com o cálculo de medidas associadas à forma típica de um pólipo. Por último, desenvolveu-se um método de deteção de vascularização na mucosa intestinal recorrendo essencialmente à deteção de valores máximos para cada canal do modelo RGB, definindo um valor de threshold máximo para cada um dos três canais. Uma vez testados os algoritmos e obtendo uma percentagem de especificidade e sensibilidade média superior a 70% em todos os métodos, desenvolveu-se um protótipo de uma interface gráfica para este sistema de apoio à decisão clínica que engloba os três parâmetros em análise: deteção de hemorragia, deteção de pólipo e deteção de vascularização. Esta interface fará toda a gestão do processo, ou seja, fara de forma automática a deteção e classificação das patologias a detetar, lançando uma mensagem de alerta ao clínico a informar se o paciente é ou não portador de alguma das anomalias em análise. |
Identificador |
http://hdl.handle.net/10400.22/8033 201754258 |
Idioma(s) |
por |
Direitos |
openAccess |
Palavras-Chave | #Carcinoma Colorretal #Cápsula Endoscópica #Diagnóstico Precoce #Deteção Automática #Hemorragia #Pólipo #Narrow Band Imaging |
Tipo |
masterThesis |