655 resultados para characterizations
Resumo:
First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative.
Resumo:
2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.
Resumo:
2000 Mathematics Subject Classification: 62G30, 62E10.
Resumo:
2010 Mathematics Subject Classification: 62G30, 62E10.
Resumo:
Coral reefs are in decline worldwide and coral disease is a significant contributing factor. However, etiologies of coral diseases are still not well understood. In contrast with the Caribbean, extremely little is known about coral diseases in the Philippines. In 2005, off Southeast Negros Island, Philippines, I investigated relationships between environmental parameters and prevalence of the two most common coral diseases, ulcerative white spot (UWS) and massive Porites growth anomalies (MPGAs). Samples were collected along a disease prevalence gradient 40.5 km long. Principal component analyses showed prevalence of MPGAs was positively correlated with water column nitrogen, organic carbon of surface sediments, and colony density. UWS was positively correlated with water column phosphorus. This is the first quantitative evidence linking anthropogenically-impacted water and sediment to a higher prevalence of these diseases. Histological and cytological alterations were investigated by comparing tissues from two distinct types of MPGA lesions (types 1 and 2) and healthy coral using light and electron microscopy. Skeletal abnormalities and sloughing, swelling, thinning, and loss of tissues in MPGAs resembled tissues exposed to bacterial or fungal toxins. Both lesion types had decreases in symbiotic zooxanthellae, which supply nutrients to corals. Notable alterations included migrations of chromophore cells (amoebocytes) (1) nocturnally to outer epithelia to perform wound-healing, including plugging gaps and secreting melanin in degraded tissues, and (2) diurnally to the interior of the tissue possibly to prevent shading zooxanthellae in order to maximize photosynthate production. Depletion of melanin (active in wound healing) in type 2 lesions suggested type 2 tissues were overtaxed and less stable. MPGAs contained an abundance of endolithic fungi and virus-like particles, which may result from higher nutrient levels and play roles in disease development. Swollen cells and mucus frequently blocked gastrovascular canals (GVCs) in MPGAs. Type 1 lesions appeared to compensate for impeded flow of wastes and nutrients through these canals with proliferation of new GVCs, which were responsible for the observed thickened tissues. In contrast, type 2 tissues were thin and more degraded. Dysplasia and putative neoplasia were also observed in MPGAs which may result from the tissue regeneration capacity being overwhelmed.
Resumo:
Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n = 190) and manatees (n = 56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immunocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included T$\rm\sb{h}$, T$\rm\sb{c/s}$, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating T$\rm\sb{h}$ cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.
Resumo:
Coral reefs are in decline worldwide and coral disease is a significant contributing factor. However, etiologies of coral diseases are still not well understood. In contrast with the Caribbean, extremely little is known about coral diseases in the Philippines. In 2005, off Southeast Negros Island, Philippines, I investigated relationships between environmental parameters and prevalence of the two most common coral diseases, ulcerative white spot (UWS) and massive Porites growth anomalies (MPGAs). Samples were collected along a disease prevalence gradient 40.5 km long. Principal component analyses showed prevalence of MPGAs was positively correlated with water column nitrogen, organic carbon of surface sediments, and colony density. UWS was positively correlated with water column phosphorus. This is the first quantitative evidence linking anthropogenically-impacted water and sediment to a higher prevalence of these diseases. Histological and cytological alterations were investigated by comparing tissues from two distinct types of MPGA lesions (types 1 and 2) and healthy coral using light and electron microscopy. Skeletal abnormalities and sloughing, swelling, thinning, and loss of tissues in MPGAs resembled tissues exposed to bacterial or fungal toxins. Both lesion types had decreases in symbiotic zooxanthellae, which supply nutrients to corals. Notable alterations included migrations of chromophore cells (amoebocytes) (1) nocturnally to outer epithelia to perform wound-healing, including plugging gaps and secreting melanin in degraded tissues, and (2) diurnally to the interior of the tissue possibly to prevent shading zooxanthellae in order to maximize photosynthate production. Depletion of melanin (active in wound healing) in type 2 lesions suggested type 2 tissues were overtaxed and less stable. MPGAs contained an abundance of endolithic fungi and virus-like particles, which may result from higher nutrient levels and play roles in disease development. Swollen cells and mucus frequently blocked gastrovascular canals (GVCs) in MPGAs. Type 1 lesions appeared to compensate for impeded flow of wastes and nutrients through these canals with proliferation of new GVCs, which were responsible for the observed thickened tissues. In contrast, type 2 tissues were thin and more degraded. Dysplasia and putative neoplasia were also observed in MPGAs which may result from the tissue regeneration capacity being overwhelmed.
Resumo:
Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n=180) and manatees (n=56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immuocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included Th, Tes, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating Th cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal characterizations of high power light emitting diodes (LEDs) and laser diodes (LDs) are one of the most critical issues to achieve optimal performance such as center wavelength, spectrum, power efficiency, and reliability. Unique electrical/optical/thermal characterizations are proposed to analyze the complex thermal issues of high power LEDs and LDs. First, an advanced inverse approach, based on the transient junction temperature behavior, is proposed and implemented to quantify the resistance of the die-attach thermal interface (DTI) in high power LEDs. A hybrid analytical/numerical model is utilized to determine an approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI. Then, an accurate value of the resistance of the DTI is determined inversely from the experimental data over the predetermined transient time domain using numerical modeling. Secondly, the effect of junction temperature on heat dissipation of high power LEDs is investigated. The theoretical aspect of junction temperature dependency of two major parameters – the forward voltage and the radiant flux – on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. An empirical model of heat dissipation is proposed for applications in practice. Finally, a hybrid experimental/numerical method is proposed to predict the junction temperature distribution of a high power LD bar. A commercial water-cooled LD bar is used to present the proposed method. A unique experimental setup is developed and implemented to measure the average junction temperatures of the LD bar. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely. The characterized properties are used to predict the junction temperature distribution over the LD bar under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift.
Resumo:
Magnetic nanoparticles (MNPs) are known for the unique properties conferred by their small size and have found wide application in food safety analyses. However, their high surface energy and strong magnetization often lead to aggregation, compromising their functions. In this study, iron oxide magnetic particles (MPs) over the range of nano to micro size were synthesized, from which particles with less aggregation and excellent magnetic properties were obtained. MPs were synthesized via three different hydrothermal procedures, using poly (acrylic acid) (PAA) of different molecular weight (Mw) as the stabilizer. The particle size, morphology, and magnetic properties of the MPs from these synthesis procedures were characterized and compared. Among the three syntheses, one-step hydrothermal synthesis demonstrated the highest yield and most efficient magnetic collection of the resulting PAA-coated magnetic microparticles (PAA-MMPs, >100 nm). Iron oxide content of these PAA-MMPs was around 90%, and the saturation magnetization ranged from 70.3 emu/g to 57.0 emu/g, depending on the Mw of PAA used. In this approach, the particles prepared using PAA with Mw of 100K g/mol exhibited super-paramagnetic behavior with ~65% lower coercivity and remanence compared to others. They were therefore less susceptible to aggregation and remained remarkably water-dispersible even after one-month storage. Three applications involving PAA-MMPs from one-step hydrothermal synthesis were explored: food proteins and enzymes immobilization, antibody conjugation for pathogen capture, and magnetic hydrogel film fabrication. These studies demonstrated their versatile functions as well as their potential applications in the food science area.
Resumo:
One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.
Resumo:
A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.
Resumo:
Effective information and knowledge management (IKM) is critical to corporate success; yet, its actual establishment and management is not yet fully understood. We identify ten organizational elements that need to be addressed to ensure the effective implementation and maintenance of information and knowledge management within organizations. We define these elements and provide key characterizations. We then discuss a case study that describes the implementation of an information system (designed to support IKM) in a medical supplies organization. We apply the framework of organizational elements in our analysis to uncover the enablers and barriers in this systems implementation project. Our analysis suggests that taking the ten organizational elements into consideration when implementing information systems will assist practitioners in managing information and knowledge processes more effectively and efficiently. We discuss implications for future research.