945 resultados para catch and effort data
Resumo:
This study aims to optimize the water quality monitoring of a polluted watercourse (Leça River, Portugal) through the principal component analysis (PCA) and cluster analysis (CA). These statistical methodologies were applied to physicochemical, bacteriological and ecotoxicological data (with the marine bacterium Vibrio fischeri and the green alga Chlorella vulgaris) obtained with the analysis of water samples monthly collected at seven monitoring sites and during five campaigns (February, May, June, August, and September 2006). The results of some variables were assigned to water quality classes according to national guidelines. Chemical and bacteriological quality data led to classify Leça River water quality as “bad” or “very bad”. PCA and CA identified monitoring sites with similar pollution pattern, giving to site 1 (located in the upstream stretch of the river) a distinct feature from all other sampling sites downstream. Ecotoxicity results corroborated this classification thus revealing differences in space and time. The present study includes not only physical, chemical and bacteriological but also ecotoxicological parameters, which broadens new perspectives in river water characterization. Moreover, the application of PCA and CA is very useful to optimize water quality monitoring networks, defining the minimum number of sites and their location. Thus, these tools can support appropriate management decisions.
Resumo:
The Chaves basin is a pull-apart tectonic depression implanted on granites, schists, and graywackes, and filled with a sedimentary sequence of variable thickness. It is a rather complex structure, as it includes an intricate network of faults and hydrogeological systems. The topography of the basement of the Chaves basin still remains unclear, as no drill hole has ever intersected the bottom of the sediments, and resistivity surveys suffer from severe equivalence issues resulting from the geological setting. In this work, a joint inversion approach of 1D resistivity and gravity data designed for layered environments is used to combine the consistent spatial distribution of the gravity data with the depth sensitivity of the resistivity data. A comparison between the results from the inversion of each data set individually and the results from the joint inversion show that although the joint inversion has more difficulty adjusting to the observed data, it provides more realistic and geologically meaningful models than the ones calculated by the inversion of each data set individually. This work provides a contribution for a better understanding of the Chaves basin, while using the opportunity to study further both the advantages and difficulties comprising the application of the method of joint inversion of gravity and resistivity data.
Resumo:
This study identifies predictors and normative data for quality of life (QOL) in a sample of Portuguese adults from general population. A cross-sectional correlational study was undertaken with two hundred and fifty-five (N = 255) individuals from Portuguese general population (mean age 43 years, range 25–84 years; 148 females, 107 males). Participants completed the European Portuguese version of the World Health Organization Quality of Life short-form instrument and the European Portuguese version of the Center for Epidemiologic Studies Depression Scale. Demographic information was also collected. Portuguese adults reported their QOL as good. The physical, psychological and environmental domains predicted 44 % of the variance of QOL. The strongest predictor was the physical domain and the weakest was social relationships. Age, educational level, socioeconomic status and emotional status were significantly correlated with QOL and explained 25 % of the variance of QOL. The strongest predictor of QOL was emotional status followed by education and age. QOL was significantly different according to: marital status; living place (mainland or islands); type of cohabitants; occupation; health. The sample of adults from general Portuguese population reported high levels of QOL. The life domain that better explained QOL was the physical domain. Among other variables, emotional status best predicted QOL. Further variables influenced overall QOL. These findings inform our understanding on adults from Portuguese general population QOL and can be helpful for researchers and practitioners using this assessment tool to compare their results with normative data
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
The study of Electricity Markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring produced. Currently, lots of information concerning Electricity Markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge, to define realistic scenarios, essential for understanding and forecast Electricity Markets behaviour. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of Electricity Markets and the behaviour of the involved entities. In this paper we present an adaptable tool capable of downloading, parsing and storing data from market operators’ websites, assuring actualization and reliability of stored data.
Resumo:
Dissertation presented to obtain the Ph.D degree in Bioinformatics
Resumo:
Twenty-four whole blood and serum samples were drawn from an eight year-old heart transplant child during a 36 months follow-up. EBV serology was positive for VCA-IgM and IgG, and negative for EBNA-IgG at the age of five years old when the child presented with signs and symptoms suggestive of acute infectious mononucleosis. After 14 months, serological parameters were: positive VCA-IgG, EBNA-IgG and negative VCA-IgM. This serological pattern has been maintained since then even during episodes suggestive of EBV reactivation. PCR amplified a specific DNA fragment from the EBV gp220 (detection limit of 100 viral copies). All twenty-four whole blood samples yielded positive results by PCR, while 12 out of 24 serum samples were positive. We aimed at analyzing whether detection of EBV-DNA in serum samples by PCR was associated with overt disease as stated by the need of antiviral treatment and hospitalization. Statistical analysis showed agreement between the two parameters evidenced by the Kappa test (value 0.750; p < 0.001). We concluded that detection of EBV-DNA in serum samples of immunosuppressed patients might be used as a laboratory marker of active EBV disease when a Real-Time PCR or another quantitative method is not available.
Resumo:
The superfluous consumption of energy is faced by the modern society as a Socio-Economical and Environmental problem of the present days. This situation is worsening given that it is becoming clear that the tendency is to increase energy price every year. It is also noticeable that people, not necessarily proficient in technology, are not able to know where savings can be achieved, due to the absence of accessible awareness mechanisms. One of the home user concerns is to balance the need of reducing energy consumption, while producing the same activity with all the comfort and work efficiency. The common techniques to reduce the consumption are to use a less wasteful equipment, altering the equipment program to a more economical one or disconnecting appliances that are not necessary at the moment. However, there is no direct feedback from this performed actions, which leads to the situation where the user is not aware of the influence that these techniques have in the electrical bill. With the intension to give some control over the home consumption, Energy Management Systems (EMS) were developed. These systems allow the access to the consumption information and help understanding the energy waste. However, some studies have proven that these systems have a clear mismatch between the information that is presented and the one the user finds useful for his daily life, leading to demotivation of use. In order to create a solution more oriented towards the user’s demands, a specially tailored language (DSL) was implemented. This solution allows the user to acquire the information he considers useful, through the construction of questions about his energy consumption. The development of this language, following the Model Driven Development (MDD) approach, took into consideration the ideas of facility managers and home users in the phases of design and validation. These opinions were gathered through meetings with experts and a survey, which was conducted to the purpose of collecting statistics about what home users want to know.
Resumo:
Crisis-affected communities and global organizations for international aid are becoming increasingly digital as consequence geotechnology popularity. Humanitarian sector changed in profound ways by adopting new technical approach to obtain information from area with difficult geographical or political access. Since 2011, turkey is hosting a growing number of Syrian refugees along southeastern region. Turkish policy of hosting them in camps and the difficulty created by governors to international aid group expeditions to get information, made such international organizations to investigate and adopt other approach in order to obtain information needed. They intensified its remote sensing approach. However, the majority of studies used very high-resolution satellite imagery (VHRSI). The study area is extensive and the temporal resolution of VHRSI is low, besides it is infeasible only using these sensors as unique approach for the whole area. The focus of this research, aims to investigate the potentialities of mid-resolution imagery (here only Landsat) to obtain information from region in crisis (here, southeastern Turkey) through a new web-based platform called Google Earth Engine (GEE). Hereby it is also intended to verify GEE currently reliability once the Application Programming Interface (API) is still in beta version. The finds here shows that the basic functions are trustworthy. Results pointed out that Landsat can recognize change in the spectral resolution clearly only for the first settlement. The ongoing modifications vary for each case. Overall, Landsat demonstrated high limitations, but need more investigations and may be used, with restriction, as a support of VHRSI.
Resumo:
PURPOSE: Two groups of girls with premature breast development were studied retrospectively. We tried to identify clinical, radiological, and hormonal parameters that could distinguish between a benign, nonprogressive premature thelarche and a true precocious puberty. METHODS: The clinical outcome of 88 girls with breast enlargement before 6.1 years of age was analyzed. Taking into account the progression of their sexual maturation, we allocated the children into 2 groups: "Isolated Premature Thelarche" (n = 63) and "Precocious Puberty" (n = 25) groups. Chronological and bone ages, height and growth velocity centiles, computerized tomography of hypothalamus-pituitary area, pelvic ultrasonography, gonadotropin response to luteinizing hormone-releasing hormone stimulation as well as basal levels of luteinizing hormone, follicle-stimulating hormone, estradiol, and prolactin were studied in both groups. Statistical analysis were performed using the Student t test to compare the sample means. Fisher's exact test and chi² test were used to analyze the nonparametric variables. RESULTS: Isolated premature thelarche most frequently affected girls younger than 2 years who presented exaggerated follicle-stimulating hormone response to luteinizing hormone-releasing hormone stimulation test. The precocious puberty group had higher initial stature, accelerated growth rate and bone age, increased uterine and ovarian volumes, high spontaneous luteinizing hormone levels by immunofluorimetric assay, as well as a high luteinizing hormone response and peak luteinizing hormone/follicle-stimulating hormone ratio after luteinizing hormone-releasing hormone stimulation. CONCLUSION: At initial presentation, girls who undergo true precocious puberty present advanced bone age, increased uterine and ovarian volumes in addition to breast enlargement, as well as an luteinizing hormone-predominant response after a luteinizing hormone-releasing hormone stimulation test.
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.
Resumo:
Sport fishing for peacock bass Cichla spp. in the Brazilian Amazon has increased in popularity and attracts anglers who generate significant economic benefits in rural regions. The sustainability of this fishery is partly dependent on the survival of fish caught through catch-and-release fishing. The objective of this work was to investigate, hooking mortality of Cichla spp., including speckled peacock bass (C. temensis Humbolt), butterfly peacock bass (C. orinocensis Humbolt), and popoca peacock bass (C. monoculus Agassiz) in the basin of the Negro River, the largest tributary of the Amazon River. Fish were caught at two different sites using artificial lures, transported to pens anchored in the river and monitored for 72 hours. A total of 162 individual peacock bass were captured and hooking mortality (mean % ± 95% confidence intervals) was calculated. Mean mortality was 3.5% (± 5.0), 2.3% (± 3.5) and 5.2% (± 10.2) for speckled peacock bass, butterfly peacock bass, and popoca peacock bass, respectively. Lengths of captured fish ranged from 26 to 79 cm (standard length), however, only fish under 42 cm died. This research suggests that catch-and-release sport fishing of peacock bass does not result in substantial mortality in the Negro River basin.
Resumo:
Tese de Doutoramento em Ciências (Especialidade em Matemática)
Resumo:
Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2011