968 resultados para boundary element methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is concerned with the construction of general isotropic and anisotropic adaptive strategies, as well as hp-mesh refinement techniques, in combination with dual-weighted-residual a posteriori error indicators for the discontinuous Galerkin finite element discretization of compressible fluid flow problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The image reconstruction using the EIT (Electrical Impedance Tomography) technique is a nonlinear and ill-posed inverse problem which demands a powerful direct or iterative method. A typical approach for solving the problem is to minimize an error functional using an iterative method. In this case, an initial solution close enough to the global minimum is mandatory to ensure the convergence to the correct minimum in an appropriate time interval. The aim of this paper is to present a new, simple and low cost technique (quadrant-searching) to reduce the search space and consequently to obtain an initial solution of the inverse problem of EIT. This technique calculates the error functional for four different contrast distributions placing a large prospective inclusion in the four quadrants of the domain. Comparing the four values of the error functional it is possible to get conclusions about the internal electric contrast. For this purpose, initially we performed tests to assess the accuracy of the BEM (Boundary Element Method) when applied to the direct problem of the EIT and to verify the behavior of error functional surface in the search space. Finally, numerical tests have been performed to verify the new technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents an application for the plate analysis formulation by BEM where 3 boundary equations are used, written for the transverse displacement w and the normal and tangential derivatives partial derivativew/partial derivativen and partial derivativew/partial derivatives. In this extension, the transverse displacement w is approximated by a cubic polynomial and, as a consequence, partial derivativew/partial derivatives has a quadratic approximation. This alternative BEM formulation improves the analysis of thin plates, when compared to the formulation using the linear approximation for the displacements, mainly in the obtaining of the bending moments at the boundary of the plate. The implementation of this proposal to the computational codes is simple. (C) 2004 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through deductions and formulations of the equations governing the behavior of plates elastic and thin based Kirchhoff theory, it is evident that it is justifiable to the complication of the numerical methods considering the complexity of the equations that describe the physical behavior of these elements and obtaining analytical solutions for specific situations. This study is directed to the application of the numerical method which is based on discretizations to the simplest elements which results in the reduction of data to be processed from. The numerical method in question is the Boundary Element Methods (BEM), as the name suggests, the discretizations are only the edges of the elements. The BEM converts the complex integral equations, in sums of functions that reduce the unknowns at the nodes that define the ends of discrete elements, obtaining internal values to elements using interpolation functions. Confirming the need and usefulness of the BEM, apply, then the foundations necessary to the specific cases of Civil Engineering where traditional methods do not provide the desired support, leaving in question the security situations and economics of the projects

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of deformation in soils is of paramount importance in geotechnical engineering. For a long time the complex behaviour of natural deposits defied the ingenuity of engineers. The time has come that, with the aid of computers, numerical methods will allow the solution of every problem if the material law can be specified with a certain accuracy. Boundary Techniques (B.E.) have recently exploded in a splendid flowering of methods and applications that compare advantegeously with other well-established procedures like the finite element method (F.E.). Its application to soil mechanics problems (Brebbia 1981) has started and will grow in the future. This paper tries to present a simple formulation to a classical problem. In fact, there is already a large amount of application of B.E. to diffusion problems (Rizzo et al, Shaw, Chang et al, Combescure et al, Wrobel et al, Roures et al, Onishi et al) and very recently the first specific application to consolidation problems has been published by Bnishi et al. Here we develop an alternative formulation to that presented in the last reference. Fundamentally the idea is to introduce a finite difference discretization in the time domain in order to use the fundamental solution of a Helmholtz type equation governing the neutral pressure distribution. Although this procedure seems to have been unappreciated in the previous technical literature it is nevertheless effective and straightforward to implement. Indeed for the special problem in study it is perfectly suited, because a step by step interaction between the elastic and flow problems is needed. It allows also the introduction of non-linear elastic properties and time dependent conditions very easily as will be shown and compares well with performances of other approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strong motion obtained in instrumental short-span bridges show the importance of the abutments in the dynamic response of the whole structure. Many models have been used in order to take into account the influence of pier foundations although no reliable ones have been used to analyse the abutment performance. In this work three-dimensional Boundary Element models in frequency domain have been proposed and dimensionless dynamic stiffness of standard bridge abutments have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general theory that described the B.I.E.M. in steady-state elastodynamics is developed. A comprehensive formulation for homogeneous and heterogeneous media is presented and also some results in practical cases as well as a general review of several other possibilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter some applications of boundary element techniques to dynamic problems are presented. First, the basic theory is briefly reviewed in order to provide the necessary background to interpret the numerical results (for a fuller account of elastodynamic theory we recommend a study of the specialized literature). The second part of the chapter is devoted to the numerical implementation of the BEM. The presentation is based on the steady-state solution because this is the area in which most experience exists. This is by no means a limitation of the BEM method, and the use of integral transformations to obtain transient solutions is a well established procedure. Finally, in the third part three examples are presented. The first example is the steady-state solution of a plate under cyclic forces with and without a crack. The second example relies on the determination of soil compliances necessary to study soil-structure interaction and the third example treats the problem of the influence of different incidence angles of incoming waves in foundations. The last two examples are relevant to earthquake engineering problems for which the BEM is very well suited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we will introduce the reader to the techniques of the Boundary Element Method applied to simple Laplacian problems. Most classical applications refer to electrostatic and magnetic fields, but the Laplacian operator also governs problems such as Saint-Venant torsion, irrotational flow, fluid flow through porous media and the added fluid mass in fluidstructure interaction problems. This short list, to which it would be possible to add many other physical problems governed by the same equation, is an indication of the importance of the numerical treatment of the Laplacian operator. Potential theory has pioneered the use of BEM since the papers of Jaswon and Hess. An interesting introduction to the topic is given by Cruse. In the last five years a renaissance of integral methods has been detected. This can be followed in the books by Jaswon and Symm and by Brebbia or Brebbia and Walker.In this chapter we shall maintain an elementary level and follow a classical scheme in order to make the content accessible to the reader who has just started to study the technique. The whole emphasis has been put on the socalled "direct" method because it is the one which appears to offer more advantages. In this section we recall the classical concepts of potential theory and establish the basic equations of the method. Later on we discuss the discretization philosophy, the implementation of different kinds of elements and the advantages of substructuring which is unavoidable when dealing with heterogeneous materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter, we are going to describe the main features as well as the basic steps of the Boundary Element Method (BEM) as applied to elastostatic problems and to compare them with other numerical procedures. As we shall show, it is easy to appreciate the adventages of the BEM, but it is also advisable to refrain from a possible unrestrained enthusiasm, as there are also limitations to its usefulness in certain types of problems. The number of these problems, nevertheless, is sufficient to justify the interest and activity that the new procedure has aroused among researchers all over the world. Briefly speaking, the most frequently used version of the BEM as applied to elastostatics works with the fundamental solution, i.e. the singular solution of the governing equations, as an influence function and tries to satisfy the boundary conditions of the problem with the aid of a discretization scheme which consists exclusively of boundary elements. As in other numerical methods, the BEM was developed thanks to the computational possibilities offered by modern computers on totally "classical" basis. That is, the theoretical grounds are based on linear elasticity theory, incorporated long ago into the curricula of most engineering schools. Its delay in gaining popularity is probably due to the enormous momentum with which Finite Element Method (FEM) penetrated the professional and academic media. Nevertheless, the fact that these methods were developed before the BEM has been beneficial because de BEM successfully uses those results and techniques studied in past decades. Some authors even consider the BEM as a particular case of the FEM while others view both methods as special cases of the general weighted residual technique. The first paper usually cited in connection with the BEM as applied to elastostatics is that of Rizzo, even though the works of Jaswon et al., Massonet and Oliveira were published at about the same time, the reason probably being the attractiveness of the "direct" approach over the "indirect" one. The work of Tizzo and the subssequent work of Cruse initiated a fruitful period with applicatons of the direct BEM to problems of elastostacs, elastodynamics, fracture, etc. The next key contribution was that of Lachat and Watson incorporating all the FEM discretization philosophy in what is sometimes called the "second BEM generation". This has no doubt, led directly to the current developments. Among the various researchers who worked on elastostatics by employing the direct BEM, one can additionallly mention Rizzo and Shippy, Cruse et al., Lachat and Watson, Alarcón et al., Brebbia el al, Howell and Doyle, Kuhn and Möhrmann and Patterson and Sheikh, and among those who used the indirect BEM, one can additionally mention Benjumea and Sikarskie, Butterfield, Banerjee et al., Niwa et al., and Altiero and Gavazza. An interesting version of the indirct method, called the Displacement Discontinuity Method (DDM) has been developed by Crounh. A comprehensive study on various special aspects of the elastostatic BEM has been done by Heisse, while review-type articles on the subject have been reported by Watson and Hartmann. At the present time, the method is well established and is being used for the solution of variety of problems in engineering mechanics. Numerous introductory and advanced books have been published as well as research-orientated ones. In this sense, it is worth noting the series of conferences promoted by Brebbia since 1978, wich have provoked a continuous research effort all over the world in relation to the BEM. In the following sections, we shall concentrate on developing the direct BEM as applied to elastostatics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ ℝd, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical strategies employed in the evaluation of singular integrals existing in the Cauchy principal value (CPV) sense are, undoubtedly, one of the key aspects which remarkably affect the performance and accuracy of the boundary element method (BEM). Thus, a new procedure, based upon a bi-cubic co-ordinate transformation and oriented towards the numerical evaluation of both the CPV integrals and some others which contain different types of singularity is developed. Both the ideas and some details involved in the proposed formulae are presented, obtaining rather simple and-attractive expressions for the numerical quadrature which are also easily embodied into existing BEM codes. Some illustrative examples which assess the stability and accuracy of the new formulae are included.